Arrhythmias by Dimension

The mathematical study of cardiac arrhythmias can be organized by classifying arrhythmias by their spatial dimension. This paper gives an overview of cardiac arrhythmias from this organizational viewpoint, emphasizing the insights that are gained and the problems that result from identifying the arrhythmias in these terms.

[1]  A. Winfree,et al.  Scroll-Shaped Waves of Chemical Activity in Three Dimensions , 1973, Science.

[2]  A. Holden,et al.  On feedback resonant drift and interaction with the boundaries in circular and annular excitable media , 1998 .

[3]  L Glass,et al.  Alternans and period-doubling bifurcations in atrioventricular nodal conduction. , 1995, Journal of theoretical biology.

[4]  P. Kuo,et al.  Cardiac Electrophysiology: From Cell to Bedside , 1991 .

[5]  P. Wolf,et al.  Transmural activations and stimulus potentials in three-dimensional anisotropic canine myocardium. , 1988, Circulation research.

[6]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[7]  A. Winfree When time breaks down , 1987 .

[8]  A Garfinkel,et al.  Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. , 1999, The American journal of physiology.

[9]  A. Bernoff Spiral wave solutions for reaction-diffusion equations in a fast reaction/slow diffusion limit , 1991 .

[10]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[11]  Balth van der Pol Jun Docts. Sc.,et al.  LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart , 1928 .

[12]  S. Strogatz,et al.  Singular filaments organize chemical waves in three dimensions , 1983 .

[13]  D. Noble,et al.  Modelling myocardial ischaemia and reperfusion. , 1998, Progress in biophysics and molecular biology.

[14]  James P. Keener,et al.  Mathematical physiology , 1998 .

[15]  D DiFrancesco,et al.  A model of cardiac electrical activity incorporating ionic pumps and concentration changes. , 1985, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[16]  C Antzelevitch,et al.  Characteristics of Reflection as a Mechanism of Reentrant Arrhythmias and Its Relationship to Parasystole , 1980, Circulation.

[17]  Vladimir Zykov,et al.  Control of spiral-wave dynamics in active media by periodic modulation of excitability , 1993, Nature.

[18]  B Hess,et al.  Critical size and curvature of wave formation in an excitable chemical medium. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[19]  E. Carmeliet Cardiac ionic currents and acute ischemia: from channels to arrhythmias. , 1999, Physiological reviews.

[20]  Arun V. Holden,et al.  Tension of organizing filaments of scroll waves , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[21]  S Nattel,et al.  Prediction of complex atrioventricular conduction rhythms in humans with use of the atrioventricular nodal recovery curve. , 1987, Circulation.

[22]  James P. Keener,et al.  The dynamics of three-dimensional scroll waves in excitable media , 1988 .

[23]  J. Keener Chaotic behavior in piecewise continuous difference equations , 1980 .

[24]  A Garfinkel,et al.  From local to global spatiotemporal chaos in a cardiac tissue model. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  A V Panfilov,et al.  Generation of Reentry in Anisotropic Myocardium , 1993, Journal of cardiovascular electrophysiology.

[26]  James P. Keener,et al.  Rotating Spiral Waves Created by Geometry , 1994, Science.

[27]  F. Fenton,et al.  Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. , 1998, Chaos.

[28]  J. Keener A geometrical theory for spiral waves in excitable media , 1986 .

[29]  B. Surawicz,et al.  Cycle length effect on restitution of action potential duration in dog cardiac fibers. , 1983, The American journal of physiology.

[30]  James P. Keener,et al.  A Delay Equation Representation of Pulse Circulation on a Ring in Excitable Media , 1996, SIAM J. Appl. Math..

[31]  P. Pelcé,et al.  Wave front interaction in steadily rotating spirals , 1991 .

[32]  J Pauwelussen,et al.  One way traffic of pulses in a neuron , 1982, Journal of mathematical biology.

[33]  M. Courtemanche,et al.  Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. , 1998, The American journal of physiology.

[34]  L. J. Leon,et al.  Spatiotemporal evolution of ventricular fibrillation , 1998, Nature.

[35]  D. Kessler,et al.  Spirals in excitable media. II: meandering transition in the diffusive free-boundary limit , 1997 .

[36]  M. Eiswirth,et al.  Turbulence due to spiral breakup in a continuous excitable medium. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  Michael R. Guevara,et al.  Hysteresis and bistability in the direct transition from 1:1 to 2:1 rhythm in periodically driven single ventricular cells. , 1999, Chaos.

[38]  A V Holden,et al.  Design principles of a low voltage cardiac defibrillator based on the effect of feedback resonant drift. , 1994, Journal of theoretical biology.

[39]  James P. Keener Causes of Propagation Failure in Excitable Media , 1987 .

[40]  L Glass,et al.  Beyond pure parasystole: promises and problems in modeling complex arrhythmias. , 1989, The American journal of physiology.

[41]  B. R. Fink,et al.  Clinical and Experimental Pharmacology and Physiology , 1974 .

[42]  S. Strogatz,et al.  Singular filaments organize chemical waves in three dimensions IV. Wave taxonomy , 1984 .

[43]  John J. Tyson,et al.  The Dynamics of Scroll Waves in Excitable Media , 1992, SIAM Rev..

[44]  J Clémenty,et al.  A focal source of atrial fibrillation treated by discrete radiofrequency ablation. , 1997, Circulation.

[45]  S. Strogatz,et al.  Singular filaments organize chemical waves in three dimensions: I. Geometrically simple waves , 1983 .

[46]  R. Gilmour,et al.  Electrical restitution and spatiotemporal organization during ventricular fibrillation. , 1999, Circulation research.

[47]  Leon Glass,et al.  Theory of reentrant excitation in a ring of cardiac tissue , 1992 .

[48]  S. Strogatz,et al.  Singular filaments organize chemical waves in three dimensions: III. Knotted waves , 1983 .

[49]  R. Pérez,et al.  Bifurcation and chaos in a periodically stimulated cardiac oscillator , 1983 .

[50]  James P. Keener,et al.  Re-entry in an anatomical model of the heart , 1995 .

[51]  M. Pascual Understanding nonlinear dynamics , 1996 .

[52]  Denis Noble,et al.  Simulating cardiac sinus and atrial network dynamics on the Connection Machine , 1993 .

[53]  Gonzalez,et al.  Phase locking, period doubling, and chaotic phenomena in externally driven excitable systems. , 1988, Physical review. A, General physics.

[54]  A. Garfinkel,et al.  Preventing ventricular fibrillation by flattening cardiac restitution. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[55]  L Glass,et al.  Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias , 1982, Journal of mathematical biology.

[56]  James Sneyd,et al.  Curvature dependence of a model for calcium wave propagation , 1993 .

[57]  J Jalife,et al.  A Mathematical Model of Parasystole and its Application to Clinical Arrhythmias , 1977, Circulation.

[58]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[59]  Karma Scaling regime of spiral wave propagation in single-diffusive media. , 1992, Physical review letters.

[60]  C. Luo,et al.  A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. , 1994, Circulation research.

[61]  M. Allessie,et al.  Circus Movement in Rabbit Atrial Muscle as a Mechanism of Tachycardia , 1973, Circulation research.

[62]  P. Hogeweg,et al.  Spiral breakup in a modified FitzHugh-Nagumo model , 1993 .

[63]  A ROSENBLUETH,et al.  The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. , 1946, Archivos del Instituto de Cardiologia de Mexico.

[64]  D. Chialvo,et al.  Low dimensional chaos in cardiac tissue , 1990, Nature.

[65]  Müller,et al.  Feedback-controlled dynamics of meandering spiral waves. , 1995, Physical review letters.

[66]  A. Karma Electrical alternans and spiral wave breakup in cardiac tissue. , 1994, Chaos.

[67]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[68]  Glass,et al.  Resetting and Annihilation of Reentrant Abnormally Rapid Heartbeat. , 1995, Physical review letters.

[69]  G. W. Beeler,et al.  Reconstruction of the action potential of ventricular myocardial fibres , 1977, The Journal of physiology.

[70]  R. Winslow,et al.  Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. , 1998, Biophysical journal.

[71]  Alexander S. Mikhailov,et al.  Controlling Spiral Waves in Confined Geometries by Global Feedback , 1997 .

[72]  M. Allessie,et al.  Circus Movement in Rabbit Atrial Muscle as a Mechanism of Tachycardia: II. The Role of Nonuniform Recovery of Excitability in the Occurrence of Unidirectional Block, as Studied with Multiple Microelectrodes , 1976, Circulation research.

[73]  P. Grindrod,et al.  One-way blocks in cardiac tissue: a mechanism for propagation failure in Purkinje fibres. , 1991, Bulletin of mathematical biology.

[74]  J. Rinzel,et al.  The dependence of impulse propagation speed on firing frequency, dispersion, for the Hodgkin-Huxley model. , 1981, Biophysical journal.

[75]  A. Panfilov,et al.  Drift and interaction of vortices in two-dimensional heterogeneous active medium , 1983 .

[76]  L Glass,et al.  Dynamics of pure parasystole. , 1986, The American journal of physiology.

[77]  C. Antzelevitch,et al.  Phase resetting and annihilation of pacemaker activity in cardiac tissue. , 1979, Science.

[78]  M. Allessie,et al.  Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. , 1995, Circulation.

[79]  James P. Keener,et al.  Re-entry in three-dimensional Fitzhugh-Nagumo medium with rotational anisotropy , 1995 .

[80]  D. Barkley,et al.  Euclidean symmetry and the dynamics of rotating spiral waves. , 1994, Physical review letters.

[81]  W. Rheinboldt,et al.  A COMPUTER MODEL OF ATRIAL FIBRILLATION. , 1964, American heart journal.

[82]  Diffusion-Induced Vortex Filament Instability in 3-Dimensional Excitable Media , 1999, patt-sol/9909004.

[83]  L. Glass,et al.  Global bifurcations of a periodically forced biological oscillator , 1984 .

[84]  R. Cohen,et al.  Simple finite-element model accounts for wide range of cardiac dysrhythmias. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[85]  James P. Keener,et al.  On cardiac arrythmias: AV conduction block , 1981 .

[86]  J. Keener,et al.  Singular perturbation theory of traveling waves in excitable media (a review) , 1988 .

[87]  Karma,et al.  Spiral breakup in model equations of action potential propagation in cardiac tissue. , 1993, Physical review letters.

[88]  J P Keener On the formation of circulating patterns of excitation in anisotropic excitable media , 1988, Journal of mathematical biology.

[89]  J. Keener The core of the spiral , 1992 .

[90]  D. Noble A modification of the Hodgkin—Huxley equations applicable to Purkinje fibre action and pacemaker potentials , 1962, The Journal of physiology.

[91]  M R Franz,et al.  Electrical and mechanical restitution of the human heart at different rates of stimulation. , 1983, Circulation research.

[92]  Alvin Shrier,et al.  Nonlinear dynamics, chaos and complex cardiac arrhythmias , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[93]  L. Glass,et al.  Instabilities of a propagating pulse in a ring of excitable media. , 1993, Physical review letters.

[94]  Nomura,et al.  Entrainment and termination of reentrant wave propagation in a periodically stimulated ring of excitable media. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[95]  J. Keener,et al.  Helical and circular scroll wave filaments , 1990 .

[96]  Ito,et al.  Spiral breakup in a new model of discrete excitable media. , 1991, Physical review letters.

[97]  R. Pérez,et al.  Fine Structure of Phase Locking , 1982 .

[98]  A. Winfree Varieties of spiral wave behavior: An experimentalist's approach to the theory of excitable media. , 1991, Chaos.

[99]  L. Glass,et al.  A simple model for phase locking of biological oscillators , 1979, Journal of mathematical biology.

[100]  A. Panfilov,et al.  Spiral breakup as a model of ventricular fibrillation. , 1998, Chaos.

[101]  H. Tse,et al.  ELECTRICAL REMODELLING OF CHRONIC ATRIAL FIBRILLATION , 1997, Clinical and experimental pharmacology & physiology.

[102]  W. Baxter,et al.  Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. , 1993, Circulation research.

[103]  A Garfinkel,et al.  Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation. , 2000, Biophysical journal.

[104]  W. Baxter,et al.  Stationary and drifting spiral waves of excitation in isolated cardiac muscle , 1992, Nature.

[105]  J. Rinzel,et al.  INTEGRATE-AND-FIRE MODELS OF NERVE MEMBRANE RESPONSE TO OSCILLATORY INPUT. , 1981 .

[106]  J Jalife,et al.  Vortex shedding as a precursor of turbulent electrical activity in cardiac muscle. , 1996, Biophysical journal.

[107]  R. Langendorf,et al.  Modulated parasystole originating in the sinoatrial node. , 1986, Circulation.

[108]  J J Rice,et al.  Modeling gain and gradedness of Ca2+ release in the functional unit of the cardiac diadic space. , 1999, Biophysical journal.

[109]  V. Biktashev Evolution of twist of an autowave vortex , 1989 .

[110]  R. Gilmour,et al.  Biphasic restitution of action potential duration and complex dynamics in ventricular myocardium. , 1995, Circulation research.

[111]  Bruce W. Knight,et al.  Dynamics of Encoding in a Population of Neurons , 1972, The Journal of general physiology.

[112]  Glass,et al.  Periodic forcing of a limit-cycle oscillator: Fixed points, Arnold tongues, and the global organization of bifurcations. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[113]  C. Luo,et al.  A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. , 1994, Circulation research.

[114]  Daniel J. Gauthier,et al.  Prevalence of Rate-Dependent Behaviors in Cardiac Muscle , 1999 .

[115]  V. Krinsky Mathematical models of cardiac arrhythmias (spiral waves). , 1978, Pharmacology & therapeutics. Part B: General & systematic pharmacology.

[116]  Marc Courtemanche,et al.  RE-ENTRANT ROTATING WAVES IN A BEELER–REUTER BASED MODEL OF TWO-DIMENSIONAL CARDIAC ELECTRICAL ACTIVITY , 1991 .

[117]  Steven H. Strogatz,et al.  Organizing centres for three-dimensional chemical waves , 1984, Nature.