Mutual Insight on Ferroelectrics and Hybrid Halide Perovskites: A Platform for Future Multifunctional Energy Conversion

An insight into the analogies, state‐of‐the‐art technologies, concepts, and prospects under the umbrella of perovskite materials (both inorganic–organic hybrid halide perovskites and ferroelectric perovskites) for future multifunctional energy conversion and storage devices is provided. Often, these are considered entirely different branches of research; however, considering them simultaneously and holistically can provide several new opportunities. Recent advancements have highlighted the potential of hybrid perovskites for high‐efficiency solar cells. The intrinsic polar properties of these materials, including the potential for ferroelectricity, provide additional possibilities for simultaneously exploiting several energy conversion mechanisms such as the piezoelectric, pyroelectric, and thermoelectric effect and electrical energy storage. The presence of these phenomena can support the performance of perovskite solar cells. The energy conversion using these effects (piezo‐, pyro‐, and thermoelectric effect) can also be enhanced by a change in the light intensity. Thus, there lies a range of possibilities for tuning the structural, electronic, optical, and magnetic properties of perovskites to simultaneously harvest energy using more than one mechanism to realize an improved efficiency. This requires a basic understanding of concepts, mechanisms, corresponding material properties, and the underlying physics involved with these effects.

[1]  B. Sturman,et al.  The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials , 2021 .

[2]  Fei Li,et al.  Perovskite lead-free dielectrics for energy storage applications , 2019, Progress in Materials Science.

[3]  J. Juuti,et al.  Optical Control of Ferroelectric Domains: Nanoscale Insight into Macroscopic Observations , 2019, Advanced Optical Materials.

[4]  Zhen Yang,et al.  Morphological and chemical tuning of lead halide perovskite mesocrystals as long-life anode materials in lithium-ion batteries , 2019, CrystEngComm.

[5]  M. Green,et al.  Light- and bias-induced structural variations in metal halide perovskites , 2019, Nature Communications.

[6]  Ferroelectric Materials for Energy Applications , 2018 .

[7]  J. Juuti,et al.  Boosting Photovoltaic Output of Ferroelectric Ceramics by Optoelectric Control of Domains , 2018, Advanced materials.

[8]  Sergei V. Kalinin,et al.  Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite , 2018, Nature Materials.

[9]  Geon‐Tae Hwang,et al.  High‐Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook , 2018, Advanced Functional Materials.

[10]  Yan Zhang,et al.  Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic–polymer composites† †Electronic supplementary information (ESI) available: Videos of the responses of sensors. See DOI: 10.1039/c8ee01551a , 2018, Energy & environmental science.

[11]  Genshui Wang,et al.  Antiferroelectrics for Energy Storage Applications: a Review , 2018, Advanced Materials Technologies.

[12]  Hong Wang,et al.  High-Temperature Dielectric Materials for Electrical Energy Storage , 2018, Annual Review of Materials Research.

[13]  M. Green,et al.  Mixed 3D–2D Passivation Treatment for Mixed‐Cation Lead Mixed‐Halide Perovskite Solar Cells for Higher Efficiency and Better Stability , 2018 .

[14]  M. Green,et al.  The Role of Hydrogen from ALD‐Al2O3 in Kesterite Cu2ZnSnS4 Solar Cells: Grain Surface Passivation , 2018, Advanced Energy Materials.

[15]  F. Rosei,et al.  Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases , 2018 .

[16]  M. Alexe,et al.  Light‐Induced Reversible Control of Ferroelectric Polarization in BiFeO3 , 2018, Advanced materials.

[17]  K. Tadanaga,et al.  Structural and Electrochemical Evaluation of Three- and Two-Dimensional Organohalide Perovskites and Their Influence on the Reversibility of Lithium Intercalation. , 2018, Inorganic chemistry.

[18]  Jeong Yong Kim,et al.  Uniaxial Strain-Controlled Ferroelastic Domain Evolution in BiFeO3. , 2018, ACS applied materials & interfaces.

[19]  Ho Won Jang,et al.  Halide Perovskites for Applications beyond Photovoltaics , 2018 .

[20]  M. Green,et al.  Humidity‐Induced Degradation via Grain Boundaries of HC(NH2)2PbI3 Planar Perovskite Solar Cells , 2018 .

[21]  A. Ho-baillie,et al.  Passivation of Grain Boundaries by Phenethylammonium in Formamidinium-Methylammonium Lead Halide Perovskite Solar Cells , 2018 .

[22]  T. Matsushima,et al.  Grain Boundary Engineering of Halide Perovskite CH3NH3PbI3 Solar Cells with Photochemically Active Additives , 2018 .

[23]  Michael De Volder,et al.  Photo-Rechargeable Organo-Halide Perovskite Batteries. , 2018, Nano letters.

[24]  D. Mandal,et al.  Organo-Lead Halide Perovskite Induced Electroactive β-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector. , 2018, ACS applied materials & interfaces.

[25]  C. H. Ng,et al.  Cesium Lead Halide Inorganic-Based Perovskite-Sensitized Solar Cell for Photo-Supercapacitor Application under High Humidity Condition , 2018 .

[26]  Changhong Liu,et al.  A photocapacitor based on organometal halide perovskite and PANI/CNT composites integrated using a CNT bridge , 2017 .

[27]  R. B. Rakhi,et al.  Zero-Dimensional Methylammonium Bismuth Iodide-Based Lead-Free Perovskite Capacitor , 2017, ACS omega.

[28]  S. Ogale,et al.  Low-dimensional hybrid perovskites as high performance anodes for alkali-ion batteries , 2017 .

[29]  A. Zunger,et al.  Instilling defect tolerance in new compounds. , 2017, Nature materials.

[30]  G. Garcia‐Belmonte,et al.  Organohalide Perovskites are Fast Ionic Conductors , 2017 .

[31]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[32]  Yang Bai,et al.  A Game Changer: A Multifunctional Perovskite Exhibiting Giant Ferroelectricity and Narrow Bandgap with Potential Application in a Truly Monolithic Multienergy Harvester or Sensor , 2017, Advanced materials.

[33]  M. Lanagan,et al.  Homogeneous/Inhomogeneous‐Structured Dielectrics and their Energy‐Storage Performances , 2017, Advanced materials.

[34]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[35]  M. Hoffmann,et al.  Ferroelectric domains in methylammonium lead iodide perovskite thin-films , 2017 .

[36]  Jinsong Huang,et al.  CH3NH3PbI3 perovskites: Ferroelasticity revealed , 2017, Science Advances.

[37]  Jiangyu Li,et al.  Photo-induced ferroelectric switching in perovskite CH3NH3PbI3 films. , 2017, Nanoscale.

[38]  Kewei Zhang,et al.  A One‐Structure‐Based Piezo‐Tribo‐Pyro‐Photoelectric Effects Coupled Nanogenerator for Simultaneously Scavenging Mechanical, Thermal, and Solar Energies , 2017 .

[39]  Dong Wang,et al.  Doping optimization of organic-inorganic hybrid perovskite CH3NH3PbI3 for high thermoelectric efficiency , 2017 .

[40]  M. Tomar,et al.  Experimental evidence of electronic polarization in a family of photo-ferroelectrics , 2017 .

[41]  D. Oron,et al.  Tetragonal CH3NH3PbI3 is ferroelectric , 2017, Proceedings of the National Academy of Sciences.

[42]  R. Friend,et al.  Chemically diverse and multifunctional hybrid organic–inorganic perovskites , 2017 .

[43]  Yang Bai,et al.  Ferroelectric, pyroelectric, and piezoelectric properties of a photovoltaic perovskite oxide , 2017 .

[44]  Zhiyong Xiao,et al.  Enhanced Piezoelectric Response in Hybrid Lead Halide Perovskite Thin Films via Interfacing with Ferroelectric PbZr0.2Ti0.8O3. , 2017, ACS applied materials & interfaces.

[45]  R. A. Yadav,et al.  Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect , 2017 .

[46]  Jay B. Patel,et al.  Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties , 2017 .

[47]  Zhong Lin Wang,et al.  Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect. , 2017, ACS nano.

[48]  V. Nagarajan,et al.  Mechanical stress-induced switching kinetics of ferroelectric thin films at the nanoscale , 2017, Nanotechnology.

[49]  Kyungrok Kang,et al.  Poisson's ratio of BiFeO3 thin films: X‐ray reciprocal space mapping under variable uniaxial strain , 2017 .

[50]  Y. Qi,et al.  Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour , 2016, Nature Energy.

[51]  Y. Noguchi,et al.  Bulk and domain-wall effects in ferroelectric photovoltaics , 2016 .

[52]  P. Delugas,et al.  Appealing Perspectives of Hybrid Lead–Iodide Perovskites as Thermoelectric Materials , 2016 .

[53]  Yu-Meng You,et al.  Anomalously rotary polarization discovered in homochiral organic ferroelectrics , 2016, Nature Communications.

[54]  F. Giustino,et al.  Toward Lead-Free Perovskite Solar Cells , 2016 .

[55]  Jinsong Huang,et al.  Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. , 2016, Physical chemistry chemical physics : PCCP.

[56]  T. Morimoto,et al.  Large Bulk Photovoltaic Effect and Spontaneous Polarization of Single-Layer Monochalcogenides. , 2016, Physical review letters.

[57]  Kai Zhu,et al.  Towards stable and commercially available perovskite solar cells , 2016, Nature Energy.

[58]  Jinsong Huang,et al.  Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion , 2016 .

[59]  P. Umari,et al.  Electronic and optical properties of MAPbX3 perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis. , 2016, Physical chemistry chemical physics : PCCP.

[60]  Zhong Lin Wang,et al.  Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors , 2016, Science Advances.

[61]  Aron Walsh,et al.  Indirect to direct bandgap transition in methylammonium lead halide perovskite , 2016, 1609.07036.

[62]  Alessia Polemi,et al.  Erratum: Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator , 2016, Nature Photonics.

[63]  A. Heeger,et al.  Top‐Pinning Controlled Dewetting for Fabrication of Large‐Scaled Polymer Microwires and Applications in OFETs , 2016 .

[64]  L. Tan,et al.  Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond , 2016 .

[65]  Rachel A. Segalman,et al.  Organic thermoelectric materials for energy harvesting and temperature control , 2016, Nature Reviews Materials.

[66]  Mingchao Wang,et al.  Anisotropic and Ultralow Phonon Thermal Transport in Organic–Inorganic Hybrid Perovskites: Atomistic Insights into Solar Cell Thermal Management and Thermoelectric Energy Conversion Efficiency , 2016 .

[67]  G. Sewvandi,et al.  Antiferroelectric Nature of CH3NH3PbI3−xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells , 2016, Scientific Reports.

[68]  Ashok Kumar,et al.  Pyroelectric control of magnetization for tuning thermomagnetic energy conversion and magnetocaloric effect , 2016 .

[69]  M. Green,et al.  Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells , 2016 .

[70]  M. Green,et al.  Time-resolved fluorescence anisotropy study of organic lead halide perovskite , 2016 .

[71]  M. Guennou,et al.  Photovoltaics with Ferroelectrics: Current Status and Beyond , 2016, Advanced materials.

[72]  Bo Zou,et al.  Pressure-Induced Structural and Optical Properties of Organometal Halide Perovskite-Based Formamidinium Lead Bromide. , 2016, The journal of physical chemistry letters.

[73]  Prashant V Kamat,et al.  Intriguing Optoelectronic Properties of Metal Halide Perovskites. , 2016, Chemical reviews.

[74]  T. N. Guru Row,et al.  Is CH3NH3PbI3 Polar? , 2016, The journal of physical chemistry letters.

[75]  Nazifah Islam,et al.  Polarization and Dielectric Study of Methylammonium Lead Iodide Thin Film to Reveal its Nonferroelectric Nature under Solar Cell Operating Conditions , 2016 .

[76]  Tae Yun Kim,et al.  All-in-one energy harvesting and storage devices , 2016 .

[77]  Xitao Liu,et al.  A Photoferroelectric Perovskite-Type Organometallic Halide with Exceptional Anisotropy of Bulk Photovoltaic Effects. , 2016, Angewandte Chemie.

[78]  T. Bendikov,et al.  CH3NH3PbBr3 is not pyroelectric, excluding ferroelectric-enhanced photovoltaic performance , 2016 .

[79]  Jinsong Huang,et al.  Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films , 2016 .

[80]  Wei Zhang,et al.  Metal halide perovskites for energy applications , 2016, Nature Energy.

[81]  J. Rondinelli,et al.  Design of noncentrosymmetric perovskites from centric and acentric basic building units , 2016 .

[82]  Thibaud Etienne,et al.  Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells? , 2016, The journal of physical chemistry letters.

[83]  Christopher R. Bowen,et al.  Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures , 2016 .

[84]  J. Wan,et al.  Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures , 2016, Scientific Reports.

[85]  S. Meloni,et al.  Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells , 2016, Nature Communications.

[86]  H. Zeng,et al.  Photocapacitive light sensor based on metal-YMnO3-insulator-semiconductor structures , 2016 .

[87]  Vinay Gupta,et al.  Novel optically active lead-free relaxor ferroelectric (Ba0.6Bi0.2Li0.2)TiO3 , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[88]  David Cahen,et al.  Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties , 2016 .

[89]  S. Fusil,et al.  Photovoltaic response around a unique 180.DEG. ferroelectric domain wall in single-crystalline BiFeO3 , 2016, 1602.07204.

[90]  Sung-Ho Shin,et al.  Piezoelectric properties of CH3NH3PbI3 perovskite thin films and their applications in piezoelectric generators , 2016 .

[91]  R. Vaish,et al.  An insight into thermal and vibration cyclic energy harvesting using ferroelectric ceramics , 2016 .

[92]  D. Keen,et al.  Emergence of Long-Range Order in BaTiO_{3} from Local Symmetry-Breaking Distortions. , 2015, Physical review letters.

[93]  Jongbeom Na,et al.  Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure. , 2015, ACS nano.

[94]  Y. Noguchi,et al.  Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals , 2015, Scientific Reports.

[95]  B. To,et al.  Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential , 2015, Nature Communications.

[96]  Caofeng Pan,et al.  Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing , 2015, Nature Communications.

[97]  A. Stroppa,et al.  Organic–inorganic hybrid perovskites ABI3 (A = CH3NH3, NH2CHNH2; B = Sn, Pb) as potential thermoelectric materials: a density functional evaluation , 2015 .

[98]  K. Sun,et al.  Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites , 2015 .

[99]  Lianmao Peng,et al.  Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries. , 2015, Chemical communications.

[100]  C. Fennie,et al.  Interplay of Octahedral Rotations and Lone Pair Ferroelectricity in CsPbF3. , 2015, Inorganic chemistry.

[101]  R. Xiong,et al.  The First Organic–Inorganic Hybrid Luminescent Multiferroic: (Pyrrolidinium)MnBr3 , 2015, Advanced materials.

[102]  A. Chauhan,et al.  Cyclic Electrical Energy Harvesting Using Mechanical Confinement in Ferroelectric Ceramics , 2015 .

[103]  Yang Shen,et al.  Polymer-Based Dielectrics with High Energy Storage Density , 2015 .

[104]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[105]  Sabre Kais,et al.  Domain Walls Conductivity in Hybrid Organometallic Perovskites and Their Essential Role in CH3NH3PbI3 Solar Cell High Performance , 2015, Scientific Reports.

[106]  Michael C. Heiber,et al.  Identification of Trap States in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[107]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[108]  Rahul Vaish,et al.  Application Oriented Selection of Optimal Sintering Temperature from User Perspective: A Study on K0.5Na0.5NbO3 Ceramics , 2015 .

[109]  Davor Pavuna,et al.  Tuning of the Thermoelectric Figure of Merit of CH3NH3MI3 (M=Pb,Sn) Photovoltaic Perovskites , 2015, 1505.07389.

[110]  Zhong Lin Wang,et al.  Hybrid energy cells for simultaneously harvesting multi-types of energies , 2015 .

[111]  Hyun Suk Jung,et al.  Ferroelectric Polarization in CH3NH3PbI3 Perovskite. , 2015, The journal of physical chemistry letters.

[112]  H. Snaith,et al.  Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices , 2015, 1504.05454.

[113]  K. P. Ong,et al.  Enhanced photovoltaic effects and switchable conduction behavior in BiFe0.6Sc0.4O3 thin films , 2015 .

[114]  Fujun Zhang,et al.  Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskites , 2015 .

[115]  Juan Bisquert,et al.  Polarization Switching and Light-Enhanced Piezoelectricity in Lead Halide Perovskites. , 2015, The journal of physical chemistry letters.

[116]  B. Nykvist,et al.  Rapidly falling costs of battery packs for electric vehicles , 2015 .

[117]  Jun Chen,et al.  Triboelectric–Pyroelectric–Piezoelectric Hybrid Cell for High‐Efficiency Energy‐Harvesting and Self‐Powered Sensing , 2015, Advanced materials.

[118]  Kai Zhu,et al.  Ferroelectric solar cells based on inorganic-organic hybrid perovskites , 2015 .

[119]  John Wang,et al.  Ferroelectricity of CH3NH3PbI3 Perovskite. , 2015, The journal of physical chemistry letters.

[120]  T. Hansen,et al.  Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. , 2015, Chemical communications.

[121]  M. Green,et al.  Benefit of Grain Boundaries in Organic-Inorganic Halide Planar Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[122]  Fan Zheng,et al.  Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. , 2015, The journal of physical chemistry letters.

[123]  Yani Chen,et al.  Solution processed organic thermoelectrics: towards flexible thermoelectric modules , 2015 .

[124]  Mohammad Khaja Nazeeruddin,et al.  Predicting the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non‐Radiative Recombination , 2015 .

[125]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[126]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[127]  Qi Chen,et al.  The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. , 2015, Physical chemistry chemical physics : PCCP.

[128]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[129]  R. Vaish,et al.  A Prime Lead-Free Ferroelectric Ceramic for Thermal Energy Harvesting: 0.88Bi0.5Na0.5TiO3-.02SrTiO3-0.1Bi0.5Li0.5TiO3 , 2015 .

[130]  Fan Zheng,et al.  First-Principles Calculation of the Bulk Photovoltaic Effect in CH3NH3PbI3 and CH3NH3PbI(3-x)Cl(x). , 2015, The journal of physical chemistry letters.

[131]  Tsutomu Miyasaka,et al.  Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[132]  Georg Kresse,et al.  Tunable ferroelectric polarization and its interplay with spin–orbit coupling in tin iodide perovskites , 2014, Nature Communications.

[133]  Aron Walsh,et al.  Ferroelectric materials for solar energy conversion: photoferroics revisited , 2014, 1412.6929.

[134]  Khalid Mujasam Batoo,et al.  Giant energy harvesting potential in (100)-oriented 0.68PbMg1/3Nb2/3O3–0.32PbTiO3 with Pb(Zr0.3Ti0.7)O3/PbOx buffer layer and (001)-oriented 0.67PbMg1/3Nb2/3O3–0.33PbTiO3 thin films , 2014 .

[135]  Jinbao Xu,et al.  Calcium manganate: A promising candidate as buffer layer for hybrid halide perovskite photovoltaic-thermoelectric systems , 2014 .

[136]  Christopher R. Bowen,et al.  Pyroelectric materials and devices for energy harvesting applications , 2014 .

[137]  Wei Huang,et al.  Bandgap tuning of multiferroic oxide solar cells , 2014, Nature Photonics.

[138]  A. L. Tolstikhina,et al.  Giant bulk photovoltaic effect in thin ferroelectricBaTiO3films , 2014 .

[139]  Anthony K. Cheetham,et al.  Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog , 2014 .

[140]  Andrew R. Kitahara,et al.  Defect density and dielectric constant in perovskite solar cells , 2014 .

[141]  R. Xiong,et al.  An above-room-temperature ferroelectric organo-metal halide perovskite: (3-pyrrolinium)(CdCl₃). , 2014, Angewandte Chemie.

[142]  Mohammad Khaja Nazeeruddin,et al.  Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell , 2014, Nature Communications.

[143]  Yuanyuan Zhou,et al.  Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films. , 2014, The journal of physical chemistry letters.

[144]  Rahul Vaish,et al.  Selection of Lead‐Free Piezoelectric Ceramics , 2014 .

[145]  Giulia Galli,et al.  Perovskites for Solar Thermoelectric Applications: A First Principle Study of CH3NH3AI3 (A = Pb and Sn) , 2014 .

[146]  Henk J. Bolink,et al.  Radiative efficiency of lead iodide based perovskite solar cells , 2014, Scientific Reports.

[147]  Laurent Pilon,et al.  A novel thermomechanical energy conversion cycle , 2014 .

[148]  R. Donelson,et al.  Improvement in the thermoelectric properties of CaMnO3 perovskites by W doping , 2014, Journal of Materials Science.

[149]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[150]  Juan Bisquert,et al.  Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[151]  Jorge Íñiguez,et al.  Ferroelectric transitions at ferroelectric domain walls found from first principles. , 2014, Physical review letters.

[152]  Rahul Vaish,et al.  Phase Change Materials Selection for Latent Heat Thermal Energy Storage Systems (LHTESS): An Industrial Engineering Initiative Towards Materials Science , 2014 .

[153]  Aron Walsh,et al.  Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells , 2014, 1405.5810.

[154]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[155]  W. Ren,et al.  Atomistic theory of hybrid improper ferroelectricity in perovskites , 2014 .

[156]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[157]  Liang Fang,et al.  Switchable photovoltaic response from polarization modulated interfaces in BiFeO3 thin films , 2014 .

[158]  Jinsong Huang,et al.  Arising applications of ferroelectric materials in photovoltaic devices , 2014 .

[159]  Angela N. Fioretti,et al.  Defect Tolerant Semiconductors for Solar Energy Conversion. , 2014, The journal of physical chemistry letters.

[160]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[161]  Rahul Vaish,et al.  Selection of optimal sintering temperature of K0.5Na0.5NbO3 ceramics for electromechanical applications , 2014 .

[162]  Xiaohui Guo,et al.  Enhanced optical properties and the origin of carrier transport in BiFeO3/TiO2 heterostructures with 109° domain walls , 2014, 1402.6070.

[163]  R. Vaish,et al.  Enormous energy harvesting and storage potential in multiferroic epitaxial thin film hetrostructures: an unforeseen era , 2014 .

[164]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[165]  Ji-Beom Yoo,et al.  Highly Stretchable Piezoelectric‐Pyroelectric Hybrid Nanogenerator , 2014, Advanced materials.

[166]  A. Chauhan,et al.  Enhanced Thermal Energy Harvesting Using Li, K‐Doped Bi0.5Na0.5TiO3 Lead‐Free Ferroelectric Ceramics , 2014 .

[167]  Aron Walsh,et al.  Electronic structure of hybrid halide perovskite photovoltaic absorbers , 2014, 1401.6993.

[168]  Y. Rosenwaks,et al.  Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). , 2014, Nano letters.

[169]  R. Vaish,et al.  An analysis of lead-free (Bi0.5Na0.5)0.915-(Bi0.5K0.5)0.05Ba0.02Sr0.015TiO3 ceramic for efficient refrigeration and thermal energy harvesting , 2014 .

[170]  Yihe Zhang,et al.  Strong visible‐light photovoltaic effect in multiferroic Pb(Fe1/2V1/2)O3 bulk ceramics , 2014 .

[171]  Laurent Pilon,et al.  A novel thermally biased mechanical energy conversion cycle , 2013 .

[172]  Xin-he Zhang,et al.  Electrical transport properties of CaMnO3 thermoelectric compound: a theoretical study , 2013 .

[173]  Marin Alexe,et al.  Role of domain walls in the abnormal photovoltaic effect in BiFeO3 , 2013, Nature Communications.

[174]  Han Yan,et al.  Integrated Energy-Harvesting System by Combining the Advantages of Polymer Solar Cells and Thermoelectric Devices , 2013 .

[175]  Liyan Wu,et al.  Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials , 2013, Nature.

[176]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[177]  J. Even,et al.  Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications , 2013 .

[178]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[179]  Rainer Heintzmann,et al.  Superresolution Multidimensional Imaging with Structured Illumination Microscopy , 2013 .

[180]  Guifu Zou,et al.  Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects , 2013, Scientific Reports.

[181]  Yiping Guo,et al.  Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films , 2013, Nanotechnology.

[182]  Lu You,et al.  Non-volatile memory based on the ferroelectric photovoltaic effect , 2013, Nature Communications.

[183]  Xihong Hao,et al.  A review on the dielectric materials for high energy-storage application , 2013 .

[184]  Craig J. Fennie,et al.  Why Are There So Few Perovskite Ferroelectrics , 2013, 1307.8103.

[185]  A. Tagantsev,et al.  Free-electron gas at charged domain walls in insulating BaTiO3 , 2013, Nature Communications.

[186]  Rahul Vaish,et al.  Piezoelectric material selection for transducers under fuzzy environment , 2013, Journal of Advanced Ceramics.

[187]  Fan Zheng,et al.  Prediction of a linear spin bulk photovoltaic effect in antiferromagnets. , 2013, Physical review letters.

[188]  Zhong Lin Wang,et al.  Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. , 2013, ACS nano.

[189]  Yiping Guo,et al.  Photovoltaic properties of BiFeO3 thin film capacitors by using Al-doped zinc oxide as top electrode , 2013 .

[190]  R. Ramesh,et al.  Domain wall functionality in BiFeO3 , 2013 .

[191]  Fan Zheng,et al.  First-principles calculation of the bulk photovoltaic effect in bismuth ferrite. , 2012, Physical review letters.

[192]  S. Trolier-McKinstry,et al.  Ferroelectric-thermoelectricity and Mott transition of ferroelectric oxides with high electronic conductivity , 2012 .

[193]  Zhong Lin Wang,et al.  Progress in nanogenerators for portable electronics , 2012 .

[194]  J. Junquera,et al.  Domain walls in a perovskite oxide with two primary structural order parameters: first-principles study of BiFeO$_3$ , 2012, 1211.5116.

[195]  V. Schmidt,et al.  The origin of photovoltaic responses in BiFeO3 multiferroic ceramics , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[196]  A. Fahrenbruch,et al.  Fundamentals Of Solar Cells: Photovoltaic Solar Energy Conversion , 2012 .

[197]  D. Chrisey,et al.  Relaxor-ferroelectric superlattices: high energy density capacitors , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[198]  X. Ji,et al.  Pyroelectric photovoltaic spatial solitons in unbiased photorefractive crystals , 2012 .

[199]  H. N. Lee,et al.  High rectification and photovoltaic effect in oxide nano-junctions , 2012 .

[200]  J. Seidel Domain Walls as Nanoscale Functional Elements , 2012 .

[201]  M. Shen,et al.  Enhanced photocurrent in Pb(Zr0.2Ti0.8)O3 ferroelectric film by artificially introducing asymmetrical interface Schottky barriers , 2012 .

[202]  Yan Zhang,et al.  Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. , 2012, Nano letters.

[203]  Ho Chang,et al.  Integration of dye-sensitized solar cells, thermoelectric modules and electrical storage loop system to constitute a novel photothermoelectric generator. , 2012, Journal of nanoscience and nanotechnology.

[204]  N. Mukherjee,et al.  Effect of metal doping on highly efficient photovoltaics and switchable photovoltage in bismuth ferrite nanotubes , 2012 .

[205]  M. Shen,et al.  High-efficiency ferroelectric-film solar cells with an n-type Cu₂O cathode buffer layer. , 2012, Nano letters.

[206]  Long Lin,et al.  Pyroelectric nanogenerators for harvesting thermoelectric energy. , 2012, Nano letters.

[207]  Laurent Pilon,et al.  Pyroelectric waste heat energy harvesting using heat conduction , 2012 .

[208]  Yiwei Liu,et al.  Tunable photovoltaic effects in transparent Pb(Zr0.53,Ti0.47)O3 capacitors , 2012 .

[209]  M. Alexe,et al.  A photoferroelectric material is more than the sum of its parts. , 2012, Nature Materials.

[210]  X. Moya,et al.  Spatially Resolved Photodetection in Leaky Ferroelectric BiFeO3 , 2012, Advanced materials.

[211]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[212]  Henry J. Snaith,et al.  The renaissance of dye-sensitized solar cells , 2012, Nature Photonics.

[213]  F. Yan,et al.  Dynamics of photogenerated surface charge on BiFeO3 films. , 2012, ACS nano.

[214]  Laurent Pilon,et al.  Waste heat energy harvesting using the Olsen cycle on 0.945Pb(Zn1/3Nb2/3)O3– 0.055PbTiO3 single crystals , 2012 .

[215]  S. Young,et al.  First principles calculation of the shift current photovoltaic effect in ferroelectrics. , 2012, Physical review letters.

[216]  Klaus Sokolowski-Tinten,et al.  Ultrafast photovoltaic response in ferroelectric nanolayers. , 2012, Physical review letters.

[217]  Christopher S. Lynch,et al.  Pyroelectric waste heat energy harvesting using relaxor ferroelectric 8/65/35 PLZT and the Olsen cycle , 2012 .

[218]  K. Rabe,et al.  Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations , 2012, 1201.2743.

[219]  David J. Singh,et al.  Wide bandgap tunability in complex transition metal oxides by site-specific substitution , 2012, Nature Communications.

[220]  J. Ager,et al.  Nanoscale Probing of High Photovoltages at 109° Domain Walls , 2012 .

[221]  Patrycja Paruch,et al.  Conduction at Domain Walls in Insulating Pb(Zr0.2Ti0.8)O3 Thin Films , 2011, Advanced materials.

[222]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[223]  Hongrui Jiang,et al.  Direct solar energy conversion and storage through coupling between photoelectrochemical and ferroelectric effects , 2011 .

[224]  T. Ren,et al.  Enhanced photovoltaic properties in graphene/polycrystalline BiFeO3/Pt heterojunction structure , 2011 .

[225]  Ramamoorthy Ramesh,et al.  Efficient photovoltaic current generation at ferroelectric domain walls. , 2011, Physical review letters.

[226]  R. Katiyar,et al.  Photovoltaic effect in a wide-area semiconductor-ferroelectric device , 2011 .

[227]  Clive A. Randall,et al.  High field properties and energy storage in nanocomposite dielectrics of poly(vinylidene fluoride-hexafluoropropylene) , 2011 .

[228]  L. Pintilie,et al.  Interface controlled photovoltaic effect in epitaxial Pb(Zr,Ti)O3 films with tetragonal structure , 2011 .

[229]  C. M. Folkman,et al.  Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects , 2011, 1108.3171.

[230]  H. Yi,et al.  Mechanism of the Switchable Photovoltaic Effect in Ferroelectric BiFeO3 , 2011, Advanced materials.

[231]  Karsten Buse,et al.  Light-induced charge-transport in undoped LiNbO3 crystals , 2011 .

[232]  Silvia Licoccia,et al.  Photovoltaic properties of Bi2FeCrO6 epitaxial thin films , 2011 .

[233]  F. Zhuge,et al.  Effect of top electrodes on photovoltaic properties of polycrystalline BiFeO3 based thin film capacitors , 2011, Nanotechnology.

[234]  Laurent Pilon,et al.  The pyroelectric energy harvesting capabilities of PMN–PT near the morphotropic phase boundary , 2011 .

[235]  T. Ren,et al.  Resistance switching and white-light photovoltaic effects in BiFeO3/Nb–SrTiO3 heterojunctions , 2011 .

[236]  R. Ramesh,et al.  Atomic‐Scale Evolution of Local Electronic Structure Across Multiferroic Domain Walls , 2011, Advanced materials.

[237]  Yang Yang,et al.  Efficiency enhancement in organic solar cells with ferroelectric polymers. , 2011, Nature materials.

[238]  M. Alexe,et al.  Tip-enhanced photovoltaic effects in bismuth ferrite , 2011 .

[239]  C. Fennie,et al.  Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. , 2011, Physical review letters.

[240]  Laurent Pilon,et al.  Pyroelectric energy harvesting using Olsen cycles in purified and porous poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films , 2011 .

[241]  C. Randall,et al.  Thermoelectric power factor enhancement of textured ferroelectric Sr_xBa_1-x Nb_2O_6-δ ceramics , 2011 .

[242]  Sergei V. Kalinin,et al.  Domain wall conductivity in La-doped BiFeO3. , 2010, Physical review letters.

[243]  C. Randall,et al.  Epoxy-based nanocomposites for electrical energy storage. I: Effects of montmorillonite and barium titanate nanofillers , 2010 .

[244]  Laurent Pilon,et al.  Towards optimization of a pyroelectric energy converter for harvesting waste heat , 2010 .

[245]  S. Stemmer,et al.  Large Seebeck coefficients and thermoelectric power factor of La-doped SrTiO3 thin films , 2010 .

[246]  M. Alexe,et al.  Electroresistance effects in ferroelectric tunnel barriers , 2010, 1006.1716.

[247]  Kui Yao,et al.  Bulk Photovoltaic Effect at Visible Wavelength in Epitaxial Ferroelectric BiFeO3 Thin Films , 2010, Advanced materials.

[248]  Laurent Pilon,et al.  Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting , 2010, Smart Materials and Structures.

[249]  Haitao Huang,et al.  Solar energy: Ferroelectric photovoltaics , 2010 .

[250]  P Shafer,et al.  Above-bandgap voltages from ferroelectric photovoltaic devices. , 2010, Nature nanotechnology.

[251]  S. Trolier-McKinstry,et al.  SrxBa1−xNb2O6−δ Ferroelectric-thermoelectrics: Crystal anisotropy, conduction mechanism, and power factor , 2010 .

[252]  S. Pruvost,et al.  Thermal energy harvesting from Pb(Zn1/3Nb2/3)0.955Ti0.045O3 single crystals phase transitions , 2009 .

[253]  Amen Agbossou,et al.  On thermoelectric and pyroelectric energy harvesting , 2009 .

[254]  S. Gemming,et al.  First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite , 2009, 0909.5294.

[255]  R. Ramesh,et al.  Photovoltaic effects in BiFeO3 , 2009 .

[256]  Ming-Jen Pan,et al.  High energy density nanocomposites based on surface-modified BaTiO(3) and a ferroelectric polymer. , 2009, ACS nano.

[257]  Yung C. Liang,et al.  Photovoltaic mechanisms in ferroelectric thin films with the effects of the electrodes and interfaces , 2009 .

[258]  D. Guyomar,et al.  Nonlinear pyroelectric energy harvesting from relaxor single crystals , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[259]  S.-W. Cheong,et al.  Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 , 2009, Science.

[260]  Yung C. Liang,et al.  Photovoltaic characteristics in polycrystalline and epitaxial (Pb0.97La0.03)(Zr0.52Ti0.48)O3 ferroelectric thin films sandwiched between different top and bottom electrodes , 2009 .

[261]  Sergei V. Kalinin,et al.  Conduction at domain walls in oxide multiferroics. , 2009, Nature materials.

[262]  Daniel Guyomar,et al.  Toward Heat Energy Harvesting using Pyroelectric Material , 2009 .

[263]  L. Eng,et al.  Ferroelectric lithography: bottom-up assembly and electrical performance of a single metallic nanowire. , 2009, Nano letters.

[264]  Xinglong Wu,et al.  Separation of the Schottky barrier and polarization effects on the photocurrent of Pt sandwiched Pb(Zr0.20Ti0.80)O3 films , 2008 .

[265]  Yung C. Liang,et al.  High efficient photovoltaics in nanoscaled ferroelectric thin films , 2008 .

[266]  Engineering,et al.  Anomalously large measured thermoelectric power factor in Sr1−xLaxTiO3 thin films due to SrTiO3 substrate reduction , 2008, 0804.0443.

[267]  D. Guyomar,et al.  Pyroelectric energy conversion: Optimization principles , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[268]  Lia Kouchachvili,et al.  Improving the efficiency of pyroelectric conversion , 2008 .

[269]  A. Majumdar,et al.  The influence of oxygen deficiency on the thermoelectric properties of strontium titanates , 2008 .

[270]  D. Guyomar,et al.  Energy harvesting based on FE-FE transition in ferroelectric single crystals , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[271]  Sébastien Pruvost,et al.  Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic , 2008 .

[272]  H. Ohta Thermoelectrics based on strontium titanate , 2007 .

[273]  Yung C. Liang,et al.  Stability of photovoltage and trap of light-induced charges in ferroelectric WO3-doped (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin films , 2007 .

[274]  V. Karpov,et al.  Pyroelectric coupling in thin film photovoltaics , 2007 .

[275]  A. Bell,et al.  Correlations between transition temperature, tolerance factor and cohesive energy in 2+:4+ perovskites , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[276]  M. Alexe,et al.  Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films , 2007 .

[277]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[278]  L. Martin,et al.  Leakage mechanisms in BiFeO3 thin films , 2007 .

[279]  Kui Yao,et al.  Thickness effects on photoinduced current in ferroelectric (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin films , 2007 .

[280]  K. Lim,et al.  Measurements of photovoltaic constant and photoconductivity in Ce,Mn:LiNbO3 crystal , 2006 .

[281]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[282]  Takayoshi Kobayashi,et al.  Photovoltaic properties of (Pb,La)(Zr,Ti)O3 films with different crystallographic orientations , 2005 .

[283]  K. Yao,et al.  Large photo-induced voltage in a ferroelectric thin film with in-plane polarization , 2005 .

[284]  M. Alexe,et al.  Metal-ferroelectric-metal heterostructures with Schottky contacts. I. Influence of the ferroelectric properties , 2005, cond-mat/0508570.

[285]  K. Yao,et al.  Effects of WO3 dopant on the structure and electrical properties of Pb0.97La0.03(Zr0.52Ti0.48)O3 thin films , 2005 .

[286]  E. Tsymbal,et al.  Giant Electroresistance in Ferroelectric Tunnel Junctions , 2005, cond-mat/0502109.

[287]  M. Blamire,et al.  Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3 , 2005 .

[288]  Tsutomu Miyasaka,et al.  The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy , 2004 .

[289]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[290]  J. Neaton,et al.  First-principles study of spontaneous polarization in multiferroic BiFeO 3 , 2004, cond-mat/0407679.

[291]  K. Rabe,et al.  Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures , 2004, Science.

[292]  R. Maeda,et al.  Photovoltaic effect of lead lanthanum zirconate titanate in a layered film structure design , 2004 .

[293]  Takashi Kondo,et al.  Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 , 2003 .

[294]  Brian A. Gregg,et al.  Excitonic Solar Cells , 2003 .

[295]  S. Yamanaka,et al.  Thermoelectric properties of rare earth doped SrTiO3 , 2003 .

[296]  M. Ichiki,et al.  Electrical Properties of Ferroelectric Lead Lanthanum Zirconate Titanate as an Energy Transducer for Application to Electrostatic-Optical Motor , 2002 .

[297]  Michio Ikura,et al.  Conversion of Low-Grade Heat to Electricity Using Pyroelectric Copolymer , 2002 .

[298]  V. Fridkin,et al.  Bulk photovoltaic effect in noncentrosymmetric crystals , 2001 .

[299]  L. Pintilie,et al.  Ferroelectrics: new wide-gap materials for UV detection , 2001 .

[300]  T. Okuda,et al.  Large thermoelectric response of metallic perovskites: Sr 1 − x La x TiO 3 ( 0 x 0 . 1 ) , 2001 .

[301]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[302]  V. Lemanov,et al.  Barrier photovoltaic effects in PZT ferroelectric thin films , 2000 .

[303]  Kenji Uchino,et al.  Photostrictive effect in lanthanum-modified lead zirconate titanate ceramics near the morphotropic phase boundary , 1999 .

[304]  Kenji Uchino,et al.  Piezoelectric Actuators and Ultrasonic Motors , 1996 .

[305]  M. Raymond,et al.  Defects and charge transport in perovskite ferroelectrics , 1996 .

[306]  K. Eguchi,et al.  Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi) , 1995 .

[307]  Wolf,et al.  Ferroelectric Schottky diode. , 1994, Physical review letters.

[308]  N. Miura,et al.  Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 , 1994 .

[309]  Ronald E. Cohen,et al.  Origin of ferroelectricity in perovskite oxides , 1992, Nature.

[310]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[311]  R. Whatmore Pyroelectric ceramics and devices for thermal infra-red detection and imaging , 1991 .

[312]  A. Dhar,et al.  Optical properties of reduced lithium niobate single crystals , 1990 .

[313]  Gordon R. Love,et al.  Energy Storage in Ceramic Dielectrics , 1990 .

[314]  Roger W. Whatmore,et al.  Pyroelectric devices and materials , 1986 .

[315]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[316]  J. Briscoe,et al.  Pyroelectric conversion cycles , 1985 .

[317]  E. W. Jacobs,et al.  Pyroelectric conversion cycle of vinylidene fluoride‐trifluoroethylene copolymer , 1985 .

[318]  R. Olsen,et al.  Pyroelectric energy conversion: hysteresis loss and temperature sensitivity of a ferroelectric material , 1983 .

[319]  R. B. Olsen,et al.  High efficieincy direct conversion of heat to electrical energy-related pyroelectric measurements , 1982 .

[320]  R. Olsen,et al.  Ferroelectric Conversion of Heat to Electrical EnergyA Demonstration , 1982 .

[321]  William F. Butler,et al.  A pyroelectric energy converter which employs regeneration , 1981 .

[322]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[323]  Karlsruhe,et al.  Theory of the bulk photovoltaic effect in pure crystals , 1981 .

[324]  P. S. Brody Semiconductor-ferroelectric nonvolatile memory using anomalous high photovoltages in ferroelectric ceramics , 1981 .

[325]  B. N. Popov,et al.  Anomalous photovoltaic effect in ferroelectrics , 1978 .

[326]  V. Fridkin The possible mechanism for the bulk photovoltaic effect and optical damage in ferroelectrics , 1977 .

[327]  V. Fridkin,et al.  The photoinduced Rayleigh scattering in BaTiO3 crystals showing the bulk photovoltaic effect , 1977 .

[328]  P. S. Brody,et al.  Mechanism for the high voltage photovoltaic effect in ceramic ferroelectrics , 1975 .

[329]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .

[330]  I. P. Batra,et al.  Depolarization-Field-Induced Instability in Thin Ferroelectric Films-Experiment and Theory , 1973 .

[331]  I. P. Batra,et al.  Phase Transition, Stability, and Depolarization Field in Ferroelectric Thin Films , 1973 .

[332]  B. Silverman,et al.  Depolarization fields in thin ferroelectric films , 1973 .

[333]  P. S. Brody Large polarization-dependent photovoltages in ceramic BaTiO3 + 5 wt.% CaTiO3 , 1973 .

[334]  V. Fridkin,et al.  PHOTOFERROELECTRIC EFFECTS IN AV BVI CVII AND BaTiO3-TYPE FERROELECTRICS , 1972 .

[335]  D. M. Smyth,et al.  Energy storage in ceramic dielectrics , 1972 .

[336]  W. R. Thurber,et al.  Electronic Transport in Strontium Titanate , 1964 .

[337]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[338]  B. Goldstein,et al.  High‐Voltage Photovoltaic Effect , 1959 .

[339]  W. J. Merz,et al.  Photovoltages Larger than the Band Gap in Zinc Sulfide Crystals , 1958 .

[340]  B. Goldstein Properties of Photovoltaic Films of CdTe , 1958 .

[341]  A. G. Chynoweth,et al.  Surface Space-Charge Layers in Barium Titanate , 1956 .

[342]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[343]  M. A. García,et al.  Reversible optical control of macroscopic polarization in ferroelectrics , 2018 .

[344]  M. Green,et al.  Energy conversion approaches and materials for high-efficiency photovoltaics. , 2016, Nature materials.

[345]  Mohammad Khaja Nazeeruddin,et al.  Organohalide Lead Perovskites for Photovoltaic Applications. , 2016, The journal of physical chemistry letters.

[346]  A. Chauhan,et al.  Thermal Energy Harvesting Using Bulk Lead-Free Ferroelectric Ceramics , 2015 .

[347]  Christopher R. Bowen,et al.  Selection of Ferroelectric Ceramics for Transducers and Electrical Energy Storage Devices , 2015 .

[348]  Christopher R. Bowen,et al.  Piezoelectric and ferroelectric materials and structures for energy harvesting applications , 2014 .

[349]  F. Wei,et al.  Heat transfer between an individual carbon nanotube and gas environment in a wide knudsen number regime , 2013 .

[350]  Nico Karssemeijer,et al.  Ultrasonics, Ferroelectrics, and Frequency Control , 2011 .

[351]  A. Majumdar,et al.  Pulsed laser deposition-induced reduction of SrTiO3 crystals , 2010 .

[352]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[353]  Shane Ardo,et al.  Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. , 2009, Chemical Society reviews.

[354]  M. Ichiki,et al.  Electrical properties of photovoltaic lead lanthanum zirconate titanate in an electrostatic-optical motor application , 2004 .

[355]  T. Tritt,et al.  Recent Trends in Thermoelectric Materials Research: Part Three , 2001 .

[356]  K. Uchino,et al.  Photostriction of Sol–Gel Processed PLZT Ceramics , 1997 .

[357]  A. Prokhorov,et al.  Ferroelectric Crystals for Laser Radiation Control , 1990 .

[358]  J. Briscoe,et al.  Cascaded pyroelectric energy converter , 1984 .

[359]  P. Günter Photovoltages, photocurrents and photorefractive effects in KNbO3:Fe , 1978 .

[360]  E. Krätzig,et al.  Photo-induced currents and voltages in LiNbO3 , 1976 .

[361]  A. Glass,et al.  Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media , 1975 .

[362]  V. Fridkin,et al.  Photoconductivity in certain ferroelectrics , 1974 .

[363]  H. J. Goldsmid,et al.  Thermoelectric Refrigeration , 1964 .

[364]  Luke D. Postema,et al.  The Institute of Electrical and Electronics Engineers , 1963, Nature.

[365]  L. Pensak High-voltage photovoltaic effect , 1958 .