Seed Dispersal Anachronisms: Rethinking the Fruits Extinct Megafauna Ate

Background Some neotropical, fleshy-fruited plants have fruits structurally similar to paleotropical fruits dispersed by megafauna (mammals >103 kg), yet these dispersers were extinct in South America 10–15 Kyr BP. Anachronic dispersal systems are best explained by interactions with extinct animals and show impaired dispersal resulting in altered seed dispersal dynamics. Methodology/Principal Findings We introduce an operational definition of megafaunal fruits and perform a comparative analysis of 103 Neotropical fruit species fitting this dispersal mode. We define two megafaunal fruit types based on previous analyses of elephant fruits: fruits 4–10 cm in diameter with up to five large seeds, and fruits >10 cm diameter with numerous small seeds. Megafaunal fruits are well represented in unrelated families such as Sapotaceae, Fabaceae, Solanaceae, Apocynaceae, Malvaceae, Caryocaraceae, and Arecaceae and combine an overbuilt design (large fruit mass and size) with either a single or few (<3 seeds) extremely large seeds or many small seeds (usually >100 seeds). Within-family and within-genus contrasts between megafaunal and non-megafaunal groups of species indicate a marked difference in fruit diameter and fruit mass but less so for individual seed mass, with a significant trend for megafaunal fruits to have larger seeds and seediness. Conclusions/Significance Megafaunal fruits allow plants to circumvent the trade-off between seed size and dispersal by relying on frugivores able to disperse enormous seed loads over long-distances. Present-day seed dispersal by scatter-hoarding rodents, introduced livestock, runoff, flooding, gravity, and human-mediated dispersal allowed survival of megafauna-dependent fruit species after extinction of the major seed dispersers. Megafauna extinction had several potential consequences, such as a scale shift reducing the seed dispersal distances, increasingly clumped spatial patterns, reduced geographic ranges and limited genetic variation and increased among-population structuring. These effects could be extended to other plant species dispersed by large vertebrates in present-day, defaunated communities.

[1]  D. Strayer Implications for Conservation , 2008 .

[2]  P. Jordano,et al.  Vertebrate dispersal syndromes along the Atlantic forest: broad-scale patterns and macroecological correlates , 2008 .

[3]  Rita Mesquita,et al.  Forest Fragmentation Reduces Seed Dispersal of Duckeodendron cestroides, a Central Amazon Endemic , 2007 .

[4]  E. Schupp,et al.  Seed Dispersal: Theory and its Application in a Changing World , 2007 .

[5]  C. Peres,et al.  Basin‐Wide Effects of Game Harvest on Vertebrate Population Densities in Amazonian Forests: Implications for Animal‐Mediated Seed Dispersal , 2007 .

[6]  H. Muller‐Landau Predicting the Long‐Term Effects of Hunting on Plant Species Composition and Diversity in Tropical Forests , 2007 .

[7]  T. Yumoto,et al.  Frugivory and seed dispersal by Asian elephants, Elephas maximus, in a moist evergreen forest of Thailand , 2007, Journal of Tropical Ecology.

[8]  P. Jordano,et al.  Differential contribution of frugivores to complex seed dispersal patterns , 2007, Proceedings of the National Academy of Sciences.

[9]  N. Brown,et al.  Balanites wilsoniana: Regeneration with and without elephants , 2007 .

[10]  P. Jansen,et al.  Seed allometry and disperser assemblages in tropical rain forests: a comparison of four floras on different continents , 2007 .

[11]  E. Schupp,et al.  Using toucan-generated dispersal models to estimate seed dispersal in Amazonian Ecuador. , 2007 .

[12]  P. Jordano,et al.  Living in the land of ghosts: fruit traits and the importance of large mammals as seed dispersers in the Pantanal, Brazil. , 2007 .

[13]  P. Jordano,et al.  Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation , 2006 .

[14]  D. Westcott,et al.  Incorporating patterns of disperser behaviour into models of seed dispersal and its effects on estimated dispersal curves , 2005, Oecologia.

[15]  H. Gregory McDonald,et al.  Asynchronous extinction of late Quaternary sloths on continents and islands. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Bizerril,et al.  Fruit consumption and seed dispersal of Dimorphandra mollis Benth. (Leguminosae) by the lowland tapir in the cerrado of Central Brazil. , 2005, Brazilian journal of biology = Revista brasleira de biologia.

[17]  T. Flannery,et al.  Fifty millennia of catastrophic extinctions after human contact. , 2005, Trends in ecology & evolution.

[18]  Campbell O. Webb,et al.  A Brief History of Seed Size , 2005, Science.

[19]  L. P. Morellato,et al.  Levantamento florístico de Floresta Atlântica no sul do Estado de São Paulo, Parque Estadual Intervales, Base Saibadela , 2005 .

[20]  M. Galetti,et al.  Seed Dispersal Of Attalea Phalerata (palmae) By Crested Caracaras (caracara Plancus) In The Pantanal And A Review Of Frugivory By Raptors , 2004 .

[21]  Bruce H. Tiffney,et al.  VERTEBRATE DISPERSAL OF SEED PLANTS THROUGH TIME , 2004 .

[22]  W. S. Longland,et al.  Diplochory: are two seed dispersers better than one? , 2004, Trends in ecology & evolution.

[23]  S. Wroe,et al.  Megafaunal extinction in the late Quaternary and the global overkill hypothesis , 2004 .

[24]  J. Diniz‐Filho,et al.  Genetic diversity and population structure of Eugenia dysenterica DC. (``cagaiteira'' – Myrtaceae) in Central Brazil: Spatial analysis and implications for conservation and management , 2003, Conservation Genetics.

[25]  E. Schupp Quantity, quality and the effectiveness of seed dispersal by animals , 1993, Vegetatio.

[26]  P. Forget,et al.  Evidence for secondary seed dispersal by rodents in Panama , 1991, Oecologia.

[27]  G. Dubost,et al.  Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community , 1985, Oecologia.

[28]  S. K. Lyons,et al.  Of mice, mastodons and men: human-mediated extinctions on four continents , 2004 .

[29]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[30]  L. Chaves,et al.  Genetic structure and gene flow in Eugenia dysenterica DC in the Brazilian Cerrado utilizing SSR markers , 2003 .

[31]  Kate E. Jones,et al.  Body mass of late Quaternary mammals , 2003 .

[32]  H. Howe,et al.  Forest fragmentation severs mutualism between seed dispersers and an endemic African tree , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  C. Fausto,et al.  Amazonia 1492: Pristine Forest or Cultural Parkland? , 2003, Science.

[34]  E. Cochrane The need to be eaten: Balanites wilsoniana with and without elephant seed-dispersal , 2003, Journal of Tropical Ecology.

[35]  Apgii An update of the angiosperm phylogeny group classification for the orders and families of flowering plants : APGII , 2003 .

[36]  M. Alberdi,et al.  Paleodiet, ecology, and extinction of Pleistoceneé gomphotheres (Proboscidea) from the Pampean Region (Argentina) , 2003 .

[37]  S. Joseph Wright,et al.  The myriad consequences of hunting for vertebrates and plants in tropical forests , 2003 .

[38]  J. Bascompte,et al.  Invariant properties in coevolutionary networks of plant-animal interactions , 2002 .

[39]  C. Peres,et al.  Abiotic and vertebrate seed dispersal in the Brazilian Atlantic forest: implications for forest regeneration , 2002 .

[40]  K. McConkey,et al.  Potential disruptions to seed dispersal mutualisms in Tonga, Western Polynesia , 2002 .

[41]  P. Jarne,et al.  Evidence of low gene flow in a neotropical clustered tree species in two rainforest stands of French Guiana , 2002, Molecular ecology.

[42]  Wesley Rodrigues Silva,et al.  Patterns of fruit-frugivore interactions in two Atlantic Forest bird communities of South-eastern Brazil: implications for conservation. , 2002 .

[43]  Wesley Rodrigues Silva,et al.  Seed dispersal and frugivory : ecology, evolution, and conservation , 2002 .

[44]  D. Levey,et al.  Have frugivores influenced the evolution of fruit traits in New Zealand , 2002 .

[45]  C. Peres,et al.  Primate frugivory in two species-rich neotropical forests: implications for the demography of large-seeded plants in overhunted areas. , 2002 .

[46]  D. Levey,et al.  The seed-dispersers and fruit syndromes of Myrtaceae in the Brazilian Atlantic Forest. , 2002 .

[47]  D. Levey,et al.  Extinct pigeons and declining bat populations: are large seeds still being dispersed in the tropical Pacific? , 2002 .

[48]  Bette A. Loiselle,et al.  Potential consequences of extinction of frugivorous birds for shrubs of a tropical wet forest. , 2002 .

[49]  M. Galetti,et al.  Frugivory and Seed Dispersal by the Lowland Tapir (Tapirus terrestris) in Southeast Brazil 1 , 2001 .

[50]  M. Galetti,et al.  Frugivory and Seed Dispersal by the Lowland Tapir (Tapirus terrestris) in Southeast Brazil1 , 2001 .

[51]  M. Alberdi,et al.  The Pleistocene Gomphotheres (Proboscidea) from South America: Diversity, Habitats and Feeding Ecology , 2001 .

[52]  M. Tabarelli,et al.  Seed dispersal, plant recruitment and spatial distribution of Bactris acanthocarpa Martius (Arecaceae) in a remnant of Atlantic forest in northeast Brazil , 2001 .

[53]  John Alroy,et al.  A Multispecies Overkill Simulation of the End-Pleistocene Megafaunal Mass Extinction , 2001, Science.

[54]  D. Grattapaglia,et al.  Population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at microsatellite loci , 2001, Molecular ecology.

[55]  Bargo The ground sloth Megatherium americanum: Skull shape, bite forces, and diet , 2001 .

[56]  W. G. Spaulding,et al.  A molecular analysis of ground sloth diet through the last glaciation , 2000, Molecular ecology.

[57]  C. Dutech,et al.  Chloroplast diversity in Vouacapoua americana (Caesalpiniaceae), a neotropical forest tree , 2000, Molecular ecology.

[58]  O. Eriksson,et al.  Seed Size, Fruit Size, and Dispersal Systems in Angiosperms from the Early Cretaceous to the Late Tertiary , 2000, The American Naturalist.

[59]  P. Parolin Seed mass in Amazonian floodplain forests with contrasting nutrient supplies , 2000, Journal of Tropical Ecology.

[60]  J. Fragoso,et al.  Seed-dispersal and seedling recruitment patterns by the last Neotropical megafaunal element in Amazonia, the tapir , 2000, Journal of Tropical Ecology.

[61]  Kyle E. Harms,et al.  Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest , 2000, Nature.

[62]  H. Lorenzi Plantas daninhas do Brasil : terrestres, aquáticas, parasitas e tóxicas , 2000 .

[63]  P. Forget,et al.  Spatial patterns of two rodent-dispersed rain forest trees Carapa procera (Meliaceae) and Vouacapoua americana (Caesalpiniaceae) at Paracou, French Guiana , 1999, Journal of Tropical Ecology.

[64]  J. Terborgh,et al.  The fruits the agouti ate: Hymenaea courbaril seed fate when its disperser is absent , 1999, Journal of Tropical Ecology.

[65]  L. G. Lohmann,et al.  Flora da Reserva Ducke. Guia de identificacao das plantas vasculares de uma floresta de terra-firme na Amazonia Central , 1999 .

[66]  A. Mack An Advantage of Large Seed Size: Tolerating Rather than Succumbing to Seed Predators 1 , 1998 .

[67]  R. Fariña,et al.  BODY MASS ESTIMATIONS IN LUJANIAN (LATE PLEISTOCENE-EARLY HOLOCENE OF SOUTH AMERICA) MAMMAL MEGAFAUNA , 1998 .

[68]  José M. V. Fragoso,et al.  TAPIR-GENERATED SEED SHADOWS : SCALE-DEPENDENT PATCHINESS IN THE AMAZON RAIN FOREST , 1997 .

[69]  C. Peres,et al.  Seed dispersal, spatial distribution and population structure of Brazilnut trees (Bertholletia excelsa) in southeastern Amazonia , 1997, Journal of Tropical Ecology.

[70]  S. Hubbell,et al.  Strong density- and diversity-related effects help to maintain tree species diversity in a neotropical forest. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[71]  P. Forget Removal of seeds of Carapa procera (Meliaceae) by rodents and their fate in rainforest in French Guiana , 1996, Journal of Tropical Ecology.

[72]  W. Hartwig,et al.  A new extinct primate among the Pleistocene megafauna of Bahia, Brazil. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Adaptation and inertia in the Australian tropical lowland rain-forest flora: Contradictory trends in intergeneric and intrageneric comparisons of seed size in relation to light demand , 1996 .

[74]  J. Yamagiwa,et al.  Seed-Dispersal by Elephants in a Tropical Rain Forest in Kahuzi-Biega National Park, Zaire , 1995 .

[75]  Mario B. Aragão Plantas do pantanal , 1995 .

[76]  F. Feer Seed dispersal in African forest ruminants , 1995, Journal of Tropical Ecology.

[77]  A. Mack Distance and non-randomness of seed dispersal by the dwarf cassowary Casuarius bennetti , 1995 .

[78]  F. Feer Morphology of fruits dispersed by African forest elephants , 1995 .

[79]  M. Westoby,et al.  Seed Size and Phylogeny in Six Temperate Floras: Constraints, Niche Conservatism, and Adaptation , 1995, The American Naturalist.

[80]  C. Chapman,et al.  Survival without Dispersers: Seedling Recruitment under Parents , 1995 .

[81]  P. Jordano Angiosperm Fleshy Fruits and Seed Dispersers: A Comparative Analysis of Adaptation and Constraints in Plant-Animal Interactions , 1995, The American Naturalist.

[82]  J. Yamagiwa,et al.  How and Why Has African Solanum Chosen the Elephants Only as the Seed Disperser , 1995 .

[83]  A. Mack The Sizes of Vertebrate-Dispersed Fruits: A Neotropical-Paleotropical Comparison , 1993, The American Naturalist.

[84]  M. Rees Trade-offs among dispersal strategies in British plants , 1993, Nature.

[85]  A. Estrada,et al.  Frugivory and seed dispersal: ecological and evolutionary aspects , 1993, Advances in vegetation science.

[86]  C. Herrera,et al.  Historical Effects and Sorting Processes as Explanations for Contemporary Ecological Patterns: Character Syndromes in Mediterranean Woody Plants , 1992, The American Naturalist.

[87]  D. L. Venable,et al.  Size-Number Trade-Offs and the Variation of Seed Size with Plant Resource Status , 1992, The American Naturalist.

[88]  R. Wrangham,et al.  Balanites wilsoniana: elephant dependent dispersal? , 1992, Journal of Tropical Ecology.

[89]  Harri Lorenzi,et al.  Árvores brasileiras : manual de identificac̦ão e cultivo de plantas arbóreas nativas do Brasil , 1992 .

[90]  O. Pellmyr Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions , 1991 .

[91]  K. Lips,et al.  Angiosperm Endozoochory: Were Pterosaurs Cretaceous Seed Dispersers? , 1991, The American Naturalist.

[92]  G. Fernandes,et al.  Plant--Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions , 1992 .

[93]  P. Forget Scatterhoarding of Astrocaryum paramaca by Proechimys in French Guiana: comparison with Myoprocta exilis. , 1991 .

[94]  J. Noble On ratites and their interactions with plants , 1991 .

[95]  E. Dinerstein Seed dispersal by greater one-horned rhinoceros (Rhinoceros unicornis) and the flora of Rhinoceros latrines , 1991 .

[96]  N. Franks,et al.  Food Hoarding in Animals , 1990 .

[97]  J. Cloudsley-Thompson Quaternary Extinctions. A prehistoric revolution , 1990 .

[98]  N. Owen‐Smith Megafaunal extinctions: the conservation message from 11,000 years B.p. , 1989, Conservation biology : the journal of the Society for Conservation Biology.

[99]  J. Hunter Seed dispersal and germination of Enterolobium cyclocarpum (Jacq.) Griseb. (Leguminosae: Mimosoideae): are megafauna necessary? , 1989 .

[100]  N. Owen‐Smith The megaherbivore syndrome: alternative life style or different time frame? , 1989 .

[101]  M. Bruton,et al.  Alternative Life-History Styles of Animals , 1989, Perspectives in vertebrate science.

[102]  S. Stearns Trade-offs in life-history evolution , 1989 .

[103]  E. Dinerstein,et al.  FRUITS RHINOCEROS EAT: DISPERSAL OF TREWIA NUDIFLORA (EUPHORBIACEAE) IN LOWLAND NEPAL' , 1988 .

[104]  M. Mckenna Edentates: the evolution and ecology of armadillos, sloths, and vermilinguas. , 1986, Science.

[105]  C. Herrera Vertebrate-dispersed plants: why they don’t behave the way they should , 1986 .

[106]  A. Estrada,et al.  Frugivores and seed dispersal , 1986, Tasks for vegetation science.

[107]  T. Pratt,et al.  The influence of fruit size and structure on composition of frugivore assemblages in New Guinea , 1985 .

[108]  C. Janson,et al.  Colors of Fruit Displays of Bird-Dispersed Plants in Two Tropical Forests , 1985, The American Naturalist.

[109]  H. Howe Gomphothere Fruits: A Critique , 1985, The American Naturalist.

[110]  N. T. Wheelwright Fruit‐Size, Gape Width, and the Diets of Fruit‐Eating Birds , 1985 .

[111]  G. Montgomery,et al.  Edentates. (Book Reviews: The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas) , 1985 .

[112]  G. C. Stocker,et al.  Seed Dispersal by Cassowaries (Casuarius casuarius) in North Queensland's Rainforests , 1983 .

[113]  T. Pratt Pleistocene seed dispersal. , 1982, Science.

[114]  D. Janzen,et al.  Neotropical Anachronisms: The Fruits the Gomphotheres Ate , 1982, Science.

[115]  S. Gould,et al.  Exaptation—a Missing Term in the Science of Form , 1982, Paleobiology.

[116]  Jeff Short Diet and feeding behaviour of the forest elephant , 1981 .

[117]  D. Alexandre Le rôle disséminateur des éléphants en forêt de Taï, Côte d’ivoire , 1978, La Terre et La Vie, Revue d'Histoire naturelle.

[118]  Paul S. Martin,et al.  Extinction of the Shasta Ground Sloth , 1974 .

[119]  P. B. Cavalcante Frutas comestíveis da Amazônia II , 1974 .