The Entner-Doudoroff pathway: history, physiology and molecular biology.

The Entner-Doudoroff pathway is now known to be very widely distributed in nature. Biochemical and physiological studies show that the Entner-Doudoroff pathway can operate in a linear and catabolic mode, in a 'cyclic' mode, in a modified mode involving non-phosphorylated intermediates, or in alternative modes involving C1 metabolism and anabolism. Molecular and genetic analyses of the Entner-Doudoroff pathway in Zymomonas mobilis, Escherichia coli and Pseudomonas aeruginosa have led to an improved understanding of some fundamental aspects of metabolic controls. It can be argued that the Entner-Doudoroff pathway is more primitive than Embden-Meyerhof-Parnas glycolysis.

[1]  L. Ingram,et al.  Coordination of expression of Zymomonas mobilis glycolytic and fermentative enzymes: a simple hypothesis based on mRNA stability , 1992, Journal of bacteriology.

[2]  S. Egan,et al.  Molecular characterization of the Entner-Doudoroff pathway in Escherichia coli: sequence analysis and localization of promoters for the edd-eda operon , 1992, Journal of bacteriology.

[3]  J. Liu,et al.  Cloning, sequencing, and expression of the Zymomonas mobilis fructokinase gene and structural comparison of the enzyme with other hexose kinases , 1992, Journal of bacteriology.

[4]  J. Liu,et al.  The polycistronic mRNA of the Zymomonas mobilis glf-zwf-edd-glk operon is subject to complex transcript processing , 1992, Journal of bacteriology.

[5]  J. Liu,et al.  The Zymomonas mobilis glf, zwf, edd, and glk genes form an operon: localization of the promoter and identification of a conserved sequence in the regulatory region , 1992, Journal of bacteriology.

[6]  R. Patil,et al.  Cloning, nucleotide sequence, overexpression, and inactivation of the Escherichia coli 2-keto-4-hydroxyglutarate aldolase gene , 1992, Journal of bacteriology.

[7]  J. Liu,et al.  Cloning, characterization and expression of the Zymononas mobilis eda gene that encodes 2‐keto‐3‐deoxy‐6‐phosphogluconate aldolase of the Entner‐Doudoroff pathway , 1991, Molecular microbiology.

[8]  P. Phibbs,et al.  Cloning of a catabolite repression control (crc) gene from Pseudomonas aeruginosa, expression of the gene in Escherichia coli, and identification of the gene product in Pseudomonas aeruginosa , 1991, Journal of bacteriology.

[9]  S. Egan,et al.  Locations of the zwf, edd, and eda genes on the Escherichia coli physical map , 1991, Journal of bacteriology.

[10]  R. E. Wolf,et al.  Genetic and physical analyses of the growth rate-dependent regulation of Escherichia coli zwf expression , 1991, Journal of bacteriology.

[11]  E. Turlin,et al.  Mutants of Escherichia coli producing pyrroloquinoline quinone. , 1991, Journal of general microbiology.

[12]  M. Adamowicz,et al.  Nutritional complementation of oxidative glucose metabolism in Escherichia coli via pyrroloquinoline quinone-dependent glucose dehydrogenase and the Entner-Doudoroff pathway , 1991, Applied and environmental microbiology.

[13]  D. Tempest,et al.  METABOLIC RESPONSE OF BACILLUS STEAROTHERMOPHILUS CHEMOSTAT CULTURES TO A SECONDARY OXYGEN LIMITATION , 1991 .

[14]  T. Conway,et al.  Cloning, characterization, and nucleotide sequence analysis of a Zymomonas mobilis phosphoglucose isomerase gene that is subject to carbon source-dependent regulation , 1991, Journal of bacteriology.

[15]  R. E. Wolf,et al.  Molecular characterization of the Escherichia coli K-12 zwf gene encoding glucose 6-phosphate dehydrogenase , 1991, Journal of bacteriology.

[16]  P. R. Gardner,et al.  Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. , 1991, The Journal of biological chemistry.

[17]  L. Ingram,et al.  Segmental message stabilization as a mechanism for differential expression from the Zymomonas mobilis gap operon , 1991, Journal of bacteriology.

[18]  T. Conway,et al.  Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism , 1990, Journal of bacteriology.

[19]  R. Perkins,et al.  Analysis of cloned structural and regulatory genes for carbohydrate utilization in Pseudomonas aeruginosa PAO , 1990, Journal of bacteriology.

[20]  J. Irigoyen,et al.  Carbon Metabolism Enzymes of Rhizobium meliloti Cultures and Bacteroids and Their Distribution within Alfalfa Nodules , 1990, Applied and environmental microbiology.

[21]  J. L. Pond,et al.  Cloning, sequencing, and characterization of the principal acid phosphatase, the phoC+ product, from Zymomonas mobilis , 1989, Journal of bacteriology.

[22]  C. Vlahos,et al.  The complete amino acid sequence and identification of the active-site arginine peptide of Escherichia coli 2-keto-4-hydroxyglutarate aldolase. , 1988, The Journal of biological chemistry.

[23]  M. Rohmer,et al.  Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. , 1988, European journal of biochemistry.

[24]  L. Viikari,et al.  CARBOHYDRATE METABOLISM IN ZYMOMONAS , 1988 .

[25]  M. Danson Archaebacteria: the comparative enzymology of their central metabolic pathways. , 1988, Advances in microbial physiology.

[26]  L. Ingram,et al.  Glyceraldehyde-3-phosphate dehydrogenase gene from Zymomonas mobilis: cloning, sequencing, and identification of promoter region , 1987, Journal of bacteriology.

[27]  L. Ingram,et al.  Glycolytic flux in Zymomonas mobilis: enzyme and metabolite levels during batch fermentation , 1987, Journal of bacteriology.

[28]  A. Anderson,et al.  Alternative Pathways for the Biosynthesis of Alginate from Fructose and Glucose in Pseudomonas Mendocina and Azotobacter Vinelandii , 1987 .

[29]  A. Darzins,et al.  Gluconeogenic mutations in Pseudomonas aeruginosa: genetic linkage between fructose-bisphosphate aldolase and phosphoglycerate kinase. , 1987, Journal of general microbiology.

[30]  L. Ingram,et al.  Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase , 1987, Journal of bacteriology.

[31]  D. Calhoun,et al.  The complete nucleotide sequence of the ilvGMEDA cluster of Escherichia coli K-12. , 1987, Gene.

[32]  E. Palmero,et al.  Mutations affecting gluconate catabolism in Escherichia coli. Genetic mapping of the locus for the thermosensitive gluconokinase. , 1986, Journal of general microbiology.

[33]  A. Steinbüchel Expression of the Escherichia coli pfkA gene in Alcaligenes eutrophus and in other gram-negative bacteria , 1986, Journal of bacteriology.

[34]  M. Danson,et al.  Metabolism of glucose via a modified Entner‐Doudoroff pathway in the thermoacidophilic archaebacterium Thermoplasma acidophilum , 1986 .

[35]  L. Fothergill-Gilmore The evolution of the glycolytic pathway , 1986 .

[36]  B. Britigan,et al.  Effects of human serum on the growth and metabolism of Neisseria gonorrhoeae: an alternative view of serum , 1985, Infection and immunity.

[37]  K. L. Shuttleworth,et al.  Glucose Catabolism in Strains of Acidophilic, Heterotrophic Bacteria , 1985, Applied and environmental microbiology.

[38]  J. G. Kuenen,et al.  Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi) , 1985, Journal of bacteriology.

[39]  B. Paster,et al.  Treponema saccharophilum sp. nov., a large pectinolytic spirochete from the bovine rumen , 1985, Applied and environmental microbiology.

[40]  Robert K. Scopes,et al.  Studies on cell-free metabolism: Ethanol production by extracts of Zymomonas mobilis , 1985 .

[41]  R. Scopes,et al.  Simultaneous purification and characterization of glucokinase, fructokinase and glucose-6-phosphate dehydrogenase from Zymomonas mobilis. , 1985, The Biochemical journal.

[42]  R. H. Olsen,et al.  Cloning of genes specifying carbohydrate catabolism in Pseudomonas aeruginosa and Pseudomonas putida , 1985, Journal of bacteriology.

[43]  P. Phibbs,et al.  Chromosomal mapping of mutations affecting glycerol and glucose catabolism in Pseudomonas aeruginosa PAO , 1985, Journal of bacteriology.

[44]  Antonio H. Romano,et al.  d-Glucose Transport System of Zymomonas mobilis , 1985, Applied and environmental microbiology.

[45]  P. Maitra,et al.  Fructose 1,6-bisphosphate aldolase activity is essential for synthesis of alginate from glucose by Pseudomonas aeruginosa , 1985, Journal of bacteriology.

[46]  A. Arias,et al.  Glucose-6-phosphate dehydrogenase deficiency in pleiotropic carbohydrate-negative mutant strains of Rhizobium meliloti , 1984, Journal of bacteriology.

[47]  M. de Rosa,et al.  Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. , 1984, The Biochemical journal.

[48]  P. Postma,et al.  Evidence of a quinoprotein glucose dehydrogenase apoenzyme in several strains of Escherichia coli , 1984 .

[49]  N. Krieg,et al.  Fructose catabolism in Azospirillum brasilense and Azospirillum lipoferum , 1984 .

[50]  D. Gibson,et al.  Carbohydrate metabolism in some methylotrophic bacteria , 1984 .

[51]  A. R. Lynn,et al.  Incorporation of isotope from specifically labeled glucose into alginates of Pseudomonas aeruginosa and Azotobacter vinelandii , 1984, Journal of bacteriology.

[52]  R. Scopes,et al.  Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 6-phosphogluconate dehydratase from Zymomonas mobilis. , 1984, Analytical biochemistry.

[53]  R. Scopes Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 2-keto-3-deoxy-6-phosphogluconate aldolase from Zymomonas mobilis. , 1984, Analytical biochemistry.

[54]  P. Phibbs,et al.  Alternative pathways of carbohydrate utilization in pseudomonads. , 1984, Annual review of microbiology.

[55]  C. A. Westby,et al.  Metabolism of various carbon sources by Azospirillum brasilense , 1983, Journal of bacteriology.

[56]  P. Maitra,et al.  Alginic acid synthesis in Pseudomonas aeruginosa mutants defective in carbohydrate metabolism , 1983, Journal of bacteriology.

[57]  R. Miller,et al.  Intermediary metabolism in Legionella pneumophila: utilization of amino acids and other compounds as energy sources , 1983, Journal of bacteriology.

[58]  F. Daldal,et al.  Assessment of a futile cycle involving reconversion of fructose 6-phosphate to fructose 1,6-bisphosphate during gluconeogenic growth of Escherichia coli , 1983, Journal of bacteriology.

[59]  H. Raj,et al.  Contributing carbohydrate catabolic pathways in Cyclobacterium marinus , 1983, Journal of bacteriology.

[60]  B. Bowien,et al.  Effect of phosphoglycerate mutase deficiency on heterotrophic and autotrophic carbon metabolism of Alcaligenes eutrophus , 1982, Journal of bacteriology.

[61]  T. Lessie,et al.  Pseudomonas cepacia mutants blocked in the Entner-Doudoroff pathway , 1982, Journal of bacteriology.

[62]  C. Whitfield,et al.  Glucose Metabolism in Xanthomonas campestris , 1982 .

[63]  G. Gottschalk,et al.  D-Gluconate dehydratase from Clostridium pasteurianum. , 1982, Methods in enzymology.

[64]  J S Poindexter,et al.  The caulobacters: ubiquitous unusual bacteria. , 1981, Microbiological reviews.

[65]  W. Wood,et al.  Complete primary structure of 2-keto-3-deoxy-6-phosphogluconate aldolase. , 1980, The Journal of biological chemistry.

[66]  D. Fraenkel,et al.  The use of 6-labeled glucose to assess futile cycling in Escherichia coli. , 1980, The Journal of biological chemistry.

[67]  R. E. Wolf,et al.  Growth-rate-dependent alteration of 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase levels in Escherichia coli K-12 , 1979, Journal of bacteriology.

[68]  E. Dawes,et al.  Effect of Oxygen Concentration and Growth Rate on Glucose Metabolism, Poly-β-hydroxybutyrate Biosynthesis and Respiration of Azotobacter beijerinckii , 1979 .

[69]  R. Whittenbury,et al.  Biological and biochemical aspects of microbial growth on C1 compounds. , 1979, Annual review of microbiology.

[70]  H. E. Heath,et al.  Relationship between catabolism of glycerol and metabolism of hexosephosphate derivatives by Pseudomonas aeruginosa , 1978, Journal of bacteriology.

[71]  L. Shapiro,et al.  Galactose catabolism in Caulobacter crescentus , 1978, Journal of bacteriology.

[72]  T. Ferenci,et al.  Evolutionary aspects of autotrophy. , 1978, Microbiological reviews.

[73]  R. Conrad,et al.  An alternative pathway for the degradation of endogenous fructose during the catabolism of sucrose in Rhodopseudomonas capsulata. , 1978, Journal of general microbiology.

[74]  R. Conrad,et al.  Influence of Aerobic and Phototrophic Growth Conditions on the Distribution of Glucose and Fructose Carbon into the Entner-Doudoroff and Embden-Meyerhof Pathways in Rhodopseudomonas sphaeroides , 1977 .

[75]  G. H. Elkan,et al.  Glucose catabolism in two derivatives of a Rhizobium japonicum strain differing in nitrogen-fixing efficiency , 1977, Journal of bacteriology.

[76]  J Swings,et al.  The biology of Zymomonas , 1977, Bacteriological reviews.

[77]  S. Morse,et al.  Physiology and metabolism of pathogenic neisseria: tricarboxylic acid cycle activity in Neisseria gonorrhoeae , 1976, Journal of bacteriology.

[78]  M. Pai,et al.  Pathways of glucose catabolism in Mycobacterium smegmatis. , 1976, Canadian journal of microbiology.

[79]  Kolodziej Bj,et al.  Pathway of glucose catabolism in Caulobacter crescentus. , 1976 .

[80]  L. Arthur,et al.  Carbohydrate Catabolism of Selected Strains in the Genus Agrobacterium , 1975, Applied microbiology.

[81]  H. Kornberg,et al.  Utilization of gluconate by Escherichia coli. A role of adenosine 3':5'-cyclic monophosphate in the induction of gluconate catabolism. , 1975, The Biochemical journal.

[82]  J. Colby,et al.  Enzymological aspects of the pathways for trimethylamine oxidation and C1 assimilation of obligate methylotrophs and restricted facultative methylotrophs. , 1975, The Biochemical journal.

[83]  J. Hillman,et al.  Glyceraldehyde 3-phosphate dehydrogenase mutants of Escherichia coli , 1975, Journal of bacteriology.

[84]  M. Silver,et al.  Thiobacillus acidophilus sp. nov.; isolation and some physiological characteristics. , 1975, Canadian journal of microbiology.

[85]  T. Ferenci,et al.  The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane. , 1974, The Biochemical journal.

[86]  S. Morse,et al.  Glucose Metabolism in Neisseria gonorrhoeae , 1974, Journal of bacteriology.

[87]  N. Krieg,et al.  Sugar Catabolism in Aquaspirillum gracile , 1974, Journal of bacteriology.

[88]  R. Conrad,et al.  Different pathways for fructose and glucose utilization in Rhodopseudomonas capsulata and demonstration of 1-phosphofructokinase in phototrophic bacteria. , 1974, Biochimica et biophysica acta.

[89]  H. Kornberg,et al.  Utilization of gluconate by Escherichia coli. Uptake of D-gluconate by a mutant impaired in gluconate kinase activity and by membrane vesicles derived therefrom. , 1974, The Biochemical journal.

[90]  N. Krieg,et al.  Transport and Catabolism of d-Fructose by Spirillum itersonii , 1974, Journal of bacteriology.

[91]  R. Horvath Evolution of anaerobic-energy-yielding metabolic pathways of the procaryotes. , 1974, Journal of theoretical biology.

[92]  L. Hochstein The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. , 1974, Canadian journal of microbiology.

[93]  M. Hassan,et al.  New Pathway for Nonphosphorylated Degradation of Gluconate by Aspergillus niger , 1973, Journal of bacteriology.

[94]  P. Baumann,et al.  Enzymes of glucose catabolism in cell-free extracts of non-fermentative marine eubacteria. , 1973, Canadian journal of microbiology.

[95]  R. Kottel,et al.  Pathways of Carbohydrate Metabolism in Microcyclus Species , 1973, Journal of bacteriology.

[96]  S. Quay,et al.  Gluconate Regulation of Glucose Catabolism in Pseudomonas fluorescens , 1972, Journal of bacteriology.

[97]  S. Banerjee,et al.  Deletion mapping of zwf, the gene for a constitutive enzyme, glucose 6-phosphate dehydrogenase in Escherichia coli. , 1972, Genetics.

[98]  J. Fradkin,et al.  2-Keto-3-Deoxygluconate 6-Phosphate Aldolase Mutants of Escherichia coli , 1971 .

[99]  L. Bulla,et al.  Physiology of Sporeforming Bacteria Associated with Insects IV. Glucose Catabolism in Bacillus larvae , 1971, Journal of bacteriology.

[100]  D. Lundgren,et al.  Heterotrophic Metabolism of the Chemolithotroph Thiobacillus ferrooxidans , 1971, Journal of bacteriology.

[101]  G. Gottschalk,et al.  2-Keto-3-Deoxygluconate, an Intermediate in the Fermentation of Gluconate by Clostridia , 1971, Journal of bacteriology.

[102]  A. Matin,et al.  Enzymes of Carbohydrate Metabolism in Thiobacillus species , 1971, Journal of bacteriology.

[103]  A. Matin,et al.  Regulation of Glucose Metabolism in Thiobacillus intermedius , 1970, Journal of bacteriology.

[104]  R. Brubaker Metabolism of Carbohydrates by Pasteurella pseudotuberculosis , 1968, Journal of bacteriology.

[105]  D. Fraenkel,et al.  Glucose and Gluconate Metabolism in a Mutant of Escherichia coli Lacking Gluconate-6-phosphate Dehydrase , 1967, Journal of bacteriology.

[106]  F. Neidhardt,et al.  Adenosine Triphosphate-Linked Control of Pseudomonas aeruginosa Glucose-6-Phosphate Dehydrogenase , 1967, Journal of bacteriology.

[107]  W. Dobrogosz,et al.  Gluconate Metabolism in Escherichia coli , 1967, Journal of bacteriology.

[108]  W. Wood,et al.  [116] 6-phosphogluconic dehydrase , 1966 .

[109]  C. Wang,et al.  Comparative carbohydrate catabolism in Arthrobacter. , 1962, Journal of general microbiology.

[110]  R. Mortlock GLUCONATE METABOLISM OF PASTEURELLA PESTIS , 1962 .

[111]  A. R. Muir,et al.  Hepatic pathology in relatives of patients with haemochromatosis. , 1962, The Journal of pathology and bacteriology.

[112]  W. H. Taylor,et al.  PATHWAYS FOR BIOSYNTHESIS OF A BACTERIAL CAPSULAR POLYSACCHARIDE II , 1961 .

[113]  W. H. Taylor,et al.  Pathways for biosynthesis of a bacterial capsular polysaccharide. I. Carbohydrate metabolism and terminal oxidation mechanisms of a capsuleproducing coccus. , 1961, Journal of bacteriology.

[114]  M. Doudoroff,et al.  Carbohydrate metabolism in Rhodopseudomonas sphreoides. , 1960, Journal of general microbiology.

[115]  N. Entner On the Pathway of Carbohydrate Metabolism in Entamoeba histolytica , 1958 .

[116]  I. C. Gunsalus,et al.  Aldonic acid metabolism. I. Pathway of carbon in an inducible gluconate fermentation by Streptococcus faecalis. , 1957, Journal of bacteriology.

[117]  W. Wood,et al.  Carbohydrate metabolism by Pseudomonas fluorescens. IV. Purification and properties of 2-keto-3-deoxy-6-phosphogluconate aldolase. , 1955, The Journal of biological chemistry.

[118]  W. Wood,et al.  Carbohydrate metabolism by Pseudomonas fluorescens. III. Purification and properties of a 6-phosphogluconate dehydrase. , 1955, The Journal of biological chemistry.

[119]  M. Doudoroff,et al.  A new phosphorylated intermediate in glucose oxidation. , 1954, The Journal of biological chemistry.

[120]  R. D. Demoss,et al.  Anaerobic dissimilation of C14-labeled glucose and fructose by Pseudomonas lindneri. , 1954, The Journal of biological chemistry.

[121]  N. Entner,et al.  Glucose and gluconic acid oxidation of Pseudomonas saccharophila. , 1952, The Journal of biological chemistry.