The human genome browser at UCSC.

As vertebrate genome sequences near completion and research refocuses to their analysis, the issue of effective genome annotation display becomes critical. A mature web tool for rapid and reliable display of any requested portion of the genome at any scale, together with several dozen aligned annotation tracks, is provided at http://genome.ucsc.edu. This browser displays assembly contigs and gaps, mRNA and expressed sequence tag alignments, multiple gene predictions, cross-species homologies, single nucleotide polymorphisms, sequence-tagged sites, radiation hybrid data, transposon repeats, and more as a stack of coregistered tracks. Text and sequence-based searches provide quick and precise access to any region of specific interest. Secondary links from individual features lead to sequence details and supplementary off-site databases. One-half of the annotation tracks are computed at the University of California, Santa Cruz from publicly available sequence data; collaborators worldwide provide the rest. Users can stably add their own custom tracks to the browser for educational or research purposes. The conceptual and technical framework of the browser, its underlying MYSQL database, and overall use are described. The web site currently serves over 50,000 pages per day to over 3000 different users.

[1]  T. Caspersson,et al.  Chemical differentiation along metaphase chromosomes. , 1968, Experimental cell research.

[2]  Iscn International System for Human Cytogenetic Nomenclature , 1978 .

[3]  R. Durbin,et al.  ACeDB and macace. , 1995, Methods in cell biology.

[4]  L Kruglyak,et al.  An STS-Based Map of the Human Genome , 1995, Science.

[5]  Cécile Fizames,et al.  A comprehensive genetic map of the human genome based on 5,264 microsatellites , 1996, Nature.

[6]  David Haussler,et al.  A Generalized Hidden Markov Model for the Recognition of Human Genes in DNA , 1996, ISMB.

[7]  Elaine R. Mardis,et al.  In Genome analysis: A laboratory manual , 1997 .

[8]  Ewan Birney,et al.  Dynamite: A Flexible Code Generating Language for Dynamic Programming Methods Used in Sequence Comparison , 1997, ISMB.

[9]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[10]  D Haussler,et al.  Integrating database homology in a probabilistic gene structure model. , 1997, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[11]  Eric D. Green,et al.  Genome analysis : a laboratory manual , 1997 .

[12]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[13]  P. Lijnzaad,et al.  A physical map of 30,000 human genes. , 1998, Science.

[14]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[15]  J C Murray,et al.  Pediatrics and , 1998 .

[16]  David Botstein,et al.  SGD: Saccharomyces Genome Database , 1998, Nucleic Acids Res..

[17]  G D Schuler,et al.  Electronic PCR: bridging the gap between genome mapping and genome sequencing. , 1998, Trends in biotechnology.

[18]  S. Altschul,et al.  A public database for gene expression in human cancers. , 1999, Cancer research.

[19]  A. Smit Interspersed repeats and other mementos of transposable elements in mammalian genomes. , 1999, Current opinion in genetics & development.

[20]  Melanie E. Goward,et al.  The DNA sequence of human chromosome 22 , 1999, Nature.

[21]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[22]  S. Altschul,et al.  SAGEmap: a public gene expression resource. , 2000, Genome research.

[23]  Alex E. Lash,et al.  A systematic, high-resolution linkage of the cytogenetic and physical maps of the human genome , 2000, Nature Genetics.

[24]  Donna R. Maglott,et al.  NCBI's LocusLink and RefSeq , 2000, Nucleic Acids Res..

[25]  C. Fizames,et al.  Estimate of human gene number provided by genome-wide analysis using Tetraodon nigroviridis DNA sequence , 2000, Nature Genetics.

[26]  W. J. Kent,et al.  Conservation, regulation, synteny, and introns in a large-scale C. briggsae-C. elegans genomic alignment. , 2000, Genome research.

[27]  Simon Kelley,et al.  Getting Started with Acedb , 2000, Briefings Bioinform..

[28]  V. Solovyev,et al.  Ab initio gene finding in Drosophila genomic DNA. , 2000, Genome research.

[29]  J. Jurka Repbase update: a database and an electronic journal of repetitive elements. , 2000, Trends in genetics : TIG.

[30]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[31]  D. Haussler,et al.  A physical map of the human genome , 2001, Nature.

[32]  Sean R. Eddy,et al.  The Distributed Annotation System , 2001, BMC Bioinformatics.

[33]  Paul W. Sternberg,et al.  WormBase: network access to the genome and biology of Caenorhabditis elegans , 2001, Nucleic Acids Res..

[34]  M. Daly,et al.  A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms , 2001, Nature.

[35]  D. Haussler,et al.  Assembly of the working draft of the human genome with GigAssembler. , 2001, Genome research.

[36]  E. Birney,et al.  Mining the draft human genome , 2001, Nature.

[37]  D. Haussler,et al.  Integration of cytogenetic landmarks into the draft sequence of the human genome , 2001, Nature.

[38]  R. Stoughton,et al.  Experimental annotation of the human genome using microarray technology , 2001, Nature.

[39]  Donna R. Maglott,et al.  RefSeq and LocusLink: NCBI gene-centered resources , 2001, Nucleic Acids Res..

[40]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[41]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.