Glyco-nanomaterials: translating insights from the "sugar-code" to biomedical applications.

Over the past decade, diagnostics and therapeutics have changed gradually towards the use of more specific and targeted approaches. The most profound impact has been in the nanotechnology sectors, where an explosion in directing biomolecules to specific biomarkers has illustrated great potentials not only in detection but also in targeted therapy. Increased knowledge of the diseases at the molecular level catalyzed a shift towards identifying new biological indicators. In particular, carbohydrate-mediated molecular recognitions using nano-vehicles are likely to increasingly affect medicine opening a new area of biomedical applications. This article provides an overview of the recent progress made in recruiting the "sugar code" functionalized on various nano-platforms to decipher cellular information for both in vitro and in vivo applications. Today's glyco-technologies are enabling better detection with great therapeutic potentials. Tomorrow they are likely to bring a full understanding of the "cell-glyconanomaterial bio-conversation" where major biomedical problems will be overcome translating insights from the "glyco-nanoworld" into clinical practice.

[1]  B. Finlay,et al.  Exploitation of mammalian host cell functions by bacterial pathogens. , 1997, Science.

[2]  Jinwoo Cheon,et al.  Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging , 2007, Nature Medicine.

[3]  Gustaaf Borghs,et al.  Silane Ligand Exchange to Make Hydrophobic Superparamagnetic Nanoparticles Water-Dispersible , 2007 .

[4]  Lode Wyns,et al.  Intervening with Urinary Tract Infections Using Anti-Adhesives Based on the Crystal Structure of the FimH–Oligomannose-3 Complex , 2008, PloS one.

[5]  E. Beachey,et al.  Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface. , 1981, The Journal of infectious diseases.

[6]  N. Firon,et al.  Aromatic alpha-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal epithelial cells , 1987, Infection and immunity.

[7]  Ruth Duncan,et al.  Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation , 2004, Nature Biotechnology.

[8]  Emiliano Cló,et al.  Direct chemoselective synthesis of glyconanoparticles from unprotected reducing glycans and glycopeptide aldehydes. , 2009, Chemical communications.

[9]  Y. Jeong,et al.  Superparamagnetic iron oxide nanoparticles coated with mannan for macrophage targeting. , 2008, Journal of nanoscience and nanotechnology.

[10]  R. Liskamp,et al.  Synthesis of multivalent Streptococcus suis adhesion inhibitors by enzymatic cleavage of polygalacturonic acid and 'click' conjugation. , 2008, Organic & biomolecular chemistry.

[11]  Mark L. Wolfenden,et al.  Carbohydrate-functionalized dendrimers to investigate the predictable tunability of multivalent interactions. , 2006, Bioconjugate chemistry.

[12]  Cyndee Gruden,et al.  Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. , 2007, Journal of the American Chemical Society.

[13]  Peter H. Seeberger,et al.  Synthesis and medical applications of oligosaccharides , 2007, Nature.

[14]  David Thompson Michael Faraday's recognition of ruby gold: the birth of modern nanotechnology , 2007 .

[15]  B. V. Bronk,et al.  A review of molecular recognition technologies for detection of biological threat agents. , 2000, Biosensors & bioelectronics.

[16]  A. Bernad,et al.  Gold Glyconanoparticles as New Tools in Antiadhesive Therapy , 2004, Chembiochem : a European journal of chemical biology.

[17]  N. Firon,et al.  Interaction of mannose-containing oligosaccharides with the fimbrial lectin of Escherichia coli. , 1982, Biochemical and biophysical research communications.

[18]  L. Vannucci,et al.  Effects of N-acetyl-glucosamine-coated glycodendrimers as biological modulators in the B16F10 melanoma model in vivo. , 2003, International journal of oncology.

[19]  Chia-Chun Chen,et al.  Quantitative analysis of multivalent interactions of carbohydrate-encapsulated gold nanoparticles with concanavalin A. , 2003, Chemical communications.

[20]  S. Levy Antibiotic resistance-the problem intensifies. , 2005, Advanced drug delivery reviews.

[21]  J. M. de la Fuente,et al.  Glyconanoparticles: types, synthesis and applications in glycoscience, biomedicine and material science. , 2006, Biochimica et biophysica acta.

[22]  S. Wise Nanocarriers as an emerging platform for cancer therapy , 2007 .

[23]  Nathan Sharon,et al.  Carbohydrates as future anti-adhesion drugs for infectious diseases. , 2006, Biochimica et biophysica acta.

[24]  M. Natan,et al.  Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape , 2000 .

[25]  Raymond A. Dwek,et al.  Glycobiology: Toward Understanding the Function of Sugars. , 1996, Chemical reviews.

[26]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[27]  V. Křen,et al.  RETRACTED: GlcNAc‐terminated glycodendrimers form defined precipitates with the soluble dimeric receptor of rat natural killer cells, sNKR‐P1A , 1998, FEBS letters.

[28]  Yukari Sato,et al.  12-Mercaptododecyl β-maltoside-modified gold nanoparticles: specific ligands for concanavalin A having long flexible hydrocarbon chains , 2008, Analytical and bioanalytical chemistry.

[29]  A. Surolia,et al.  Sugar-quantum dot conjugates for a selective and sensitive detection of lectins. , 2007, Bioconjugate chemistry.

[30]  Ralph Weissleder,et al.  Use of Magnetic Nanoparticles as Nanosensors to Probe for Molecular Interactions , 2004, Chembiochem : a European journal of chemical biology.

[31]  Zeev Rosenzweig,et al.  Synthesis of Glyconanospheres Containing Luminescent CdSe−ZnS Quantum Dots , 2003 .

[32]  Hao Zeng,et al.  Size-controlled synthesis of magnetite nanoparticles. , 2002, Journal of the American Chemical Society.

[33]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[34]  W. Hur,et al.  Bioimaging for targeted delivery of hyaluronic Acid derivatives to the livers in cirrhotic mice using quantum dots. , 2010, ACS nano.

[35]  S. Penadés,et al.  Multivalent Manno‐Glyconanoparticles Inhibit DC‐SIGN‐Mediated HIV‐1 Trans‐Infection of Human T Cells , 2009, Chembiochem : a European journal of chemical biology.

[36]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[37]  David A Russell,et al.  Silver and gold glyconanoparticles for colorimetric bioassays. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[38]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[39]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[40]  A. Ragusa,et al.  Glyconanoparticle–DNA Interactions: An Atomic Force Microscopy Study , 2007, IEEE Transactions on NanoBioscience.

[41]  J. Fuente,et al.  Glyco-quantum dots: a new luminescent system with multivalent carbohydrate display , 2005 .

[42]  N. Voelcker,et al.  Novel glycodendrimers self-assemble to nanoparticles which function as polyvalent ligands in vitro and in vivo. , 2002, Angewandte Chemie.

[43]  Eva Syková,et al.  Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. , 2008, Bioconjugate chemistry.

[44]  J. M. de la Fuente,et al.  Cell Response to Magnetic Glyconanoparticles: Does the Carbohydrate Matter? , 2007, IEEE Transactions on NanoBioscience.

[45]  Dar-Bin Shieh,et al.  Characterization of aqueous dispersions of Fe(3)O(4) nanoparticles and their biomedical applications. , 2005, Biomaterials.

[46]  Mark L. Wolfenden,et al.  Mannose/glucose-functionalized dendrimers to investigate the predictable tunability of multivalent interactions. , 2005, Journal of the American Chemical Society.

[47]  C. Bertozzi,et al.  Biomimetic engineering of carbon nanotubes by using cell surface mucin mimics. , 2004, Angewandte Chemie.

[48]  May D. Wang,et al.  In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags , 2008, Nature Biotechnology.

[49]  Ya‐Ping Sun,et al.  Unique aggregation of anthrax (Bacillus anthracis) spores by sugar-coated single-walled carbon nanotubes. , 2006, Journal of the American Chemical Society.

[50]  Jinwoo Cheon,et al.  Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. , 2008, Angewandte Chemie.

[51]  U. Galili,et al.  The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. , 2008, Biochimica et biophysica acta.

[52]  J Fraser Stoddart,et al.  Design and synthesis of glycodendrimers. , 2002, Journal of biotechnology.

[53]  G. Visser,et al.  Detection of pathogenic Streptococcus suis bacteria using magnetic glycoparticles. , 2010, Organic & biomolecular chemistry.

[54]  M. Barboiu,et al.  Multivalent recognition of lectins by glyconanoparticle systems. , 2010, Chemical communications.

[55]  Luis M Liz-Marzán,et al.  Shape control in gold nanoparticle synthesis. , 2008, Chemical Society reviews.

[56]  S. Cerdán,et al.  Paramagnetic Gd-based gold glyconanoparticles as probes for MRI: tuning relaxivities with sugars. , 2009, Chemical communications.

[57]  D. A. Russell,et al.  Rapid, Quantitative Colorimetric Detection of a Lectin Using Mannose-Stabilized Gold Nanoparticles , 2003 .

[58]  R. Liskamp,et al.  Multivalent Presentation Strategies in Novel Inhibitors of Bacterial (Toxin) Adhesion and Synthetic Vaccines , 2008 .

[59]  G. Gerwig,et al.  A Facile Method for the Preparation of Gold Glyconanoparticles from Free Oligosaccharides and Their Applicability in Carbohydrate‐Protein Interaction Studies , 2005 .

[60]  H. A. Therese,et al.  Superparamagnetic γ-Fe2O3 nanoparticles with tailored functionality for protein separation , 2007 .

[61]  D. A. Russell,et al.  Glyconanoparticles for the colorimetric detection of cholera toxin. , 2007, Analytical chemistry.

[62]  D. Astruc,et al.  Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum‐Size‐Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology. , 2004 .

[63]  G. Boons Strategies in Oligosaccharide Synthesis , 1996 .

[64]  Yongmin Chang,et al.  Comparison of labeling efficiency of different magnetic nanoparticles into stem cell , 2008 .

[65]  Y. Chien,et al.  Globotriose‐Functionalized Gold Nanoparticles as Multivalent Probes for Shiga‐like Toxin , 2008, Chembiochem : a European journal of chemical biology.

[66]  S. Hakomori,et al.  Glycosylation defining cancer malignancy: New wine in an old bottle , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[67]  J. Turkevich,et al.  Low Angle X-Ray Diffraction of Colloidal Gold and Carbon Black1a , 1951 .

[68]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[69]  R. Roy,et al.  Synthesis of glycodendrimers containing both fucoside and galactoside residues and their binding properties to Pa-IL and PA-IIL lectins from Pseudomonas aeruginosa , 2007 .

[70]  G. Boons,et al.  Comprehensive glycoscience : from chemistry to systems biology , 2007 .

[71]  Jinwoo Cheon,et al.  Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. , 2005, Journal of the American Chemical Society.

[72]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[73]  Tae Gwan Park,et al.  Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes. , 2008, Biomaterials.

[74]  E. W. Meijer,et al.  About Dendrimers: Structure, Physical Properties, and Applications. , 1999, Chemical reviews.

[75]  Shih-Chang Wang,et al.  (Carboxymethyl)chitosan-modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of stem cells. , 2009, ACS applied materials & interfaces.

[76]  Po-Chiao Lin,et al.  Surface modification of magnetic nanoparticle via Cu(I)-catalyzed alkyne-azide [2 + 3] cycloaddition. , 2007, Organic letters.

[77]  E. Groman,et al.  Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides. , 2004, Bioconjugate chemistry.

[78]  R Weissleder,et al.  Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. , 2000, Radiology.

[79]  Ya‐Ping Sun,et al.  Selective interactions of sugar-functionalized single-walled carbon nanotubes with Bacillus spores. , 2009, ACS nano.

[80]  David C. Zhu,et al.  Magnetic glyco-nanoparticles: a tool to detect, differentiate, and unlock the glyco-codes of cancer via magnetic resonance imaging. , 2010, Journal of the American Chemical Society.

[81]  C. Kelly,et al.  Gold manno-glyconanoparticles: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN. , 2009, Chemistry.

[82]  W. Weis,et al.  Structural Basis for Selective Recognition of Oligosaccharides by DC-SIGN and DC-SIGNR , 2001, Science.

[83]  R. Lockey,et al.  Development of hyaluronic acid-Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[84]  C. Robic,et al.  Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. , 2008, Chemical reviews.

[85]  J. Barchi,et al.  Varied presentation of the Thomsen-Friedenreich disaccharide tumor-associated carbohydrate antigen on gold nanoparticles. , 2008, Carbohydrate research.

[86]  E. Chaikof,et al.  Site‐Specific Multivalent Carbohydrate Labeling of Quantum Dots and Magnetic Beads , 2004, Chembiochem : a European journal of chemical biology.

[87]  R. Pieters Maximising multivalency effects in protein-carbohydrate interactions. , 2009, Organic & biomolecular chemistry.

[88]  Ralph Weissleder,et al.  Magnetic relaxation switches capable of sensing molecular interactions , 2002, Nature Biotechnology.

[89]  P. Schurtenberger,et al.  Photoinitiated coupling of unmodified monosaccharides to iron oxide nanoparticles for sensing proteins and bacteria. , 2009, Bioconjugate chemistry.

[90]  Patricia A. Spears,et al.  Characterization of Escherichia coliType 1 Pilus Mutants with Altered Binding Specificities , 2001, Journal of bacteriology.

[91]  Tapas Sen,et al.  Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[92]  N. Sibson,et al.  Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease , 2009, Proceedings of the National Academy of Sciences.

[93]  David A. Russell,et al.  Bacterial detection using carbohydrate-functionalised CdS quantum dots: a model study exploiting E. coli recognition of mannosides , 2009 .

[94]  Xuefei Huang,et al.  Functionalization of magnetic nanoparticles with organic molecules: loading level determination and evaluation of linker length effect on immobilization. , 2008, Chirality.

[95]  P. Ajayan,et al.  Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties , 2009, Nanotechnology.

[96]  P. Šíma,et al.  N-Acetyl-D-glucosamine-coated polyamidoamine dendrimer modulates antibody formation via natural killer cell activation. , 2009, International immunopharmacology.

[97]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[98]  Mostafa A. El-Sayed,et al.  Why Gold Nanoparticles Are More Precious than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes , 2006 .

[99]  J. M. de la Fuente,et al.  Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy. , 2001, Angewandte Chemie.

[100]  S. Iyer,et al.  Biotinylated Bi‐ and Tetra‐antennary Glycoconjugates for Escherichia coli Detection , 2008, Chembiochem : a European journal of chemical biology.

[101]  B. Varughese,et al.  Magnetic iron oxide nanoparticles for biorecognition: evaluation of surface coverage and activity. , 2006, The journal of physical chemistry. B.

[102]  V. Hogan,et al.  Carbohydrate-binding proteins in cancer, and their ligands as therapeutic agents. , 2002, Trends in molecular medicine.

[103]  S. Svarovsky,et al.  Synthesis of gold nanoparticles bearing the Thomsen–Friedenreich disaccharide: a new multivalent presentation of an important tumor antigen , 2005 .

[104]  K. Jensen,et al.  Chemoselective capture of glycans for analysis on gold nanoparticles: carbohydrate oxime tautomers provide functional recognition by proteins. , 2009, Chemistry.

[105]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[106]  G. Springer Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy , 1997, Journal of Molecular Medicine.

[107]  Eric V Anslyn,et al.  Differential receptor arrays and assays for solution-based molecular recognition. , 2006, Chemical Society reviews.

[108]  Sangjin Park,et al.  Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. , 2008, Angewandte Chemie.

[109]  Jungbae Kim,et al.  Nanoparticle-based energy transfer for rapid and simple detection of protein glycosylation. , 2006, Angewandte Chemie.

[110]  R. Massart,et al.  Preparation of aqueous magnetic liquids in alkaline and acidic media , 1981 .

[111]  Y. Jeong,et al.  Superparamagnetic Iron Oxide Nanoparticles Coated with Galactose-Carrying Polymer for Hepatocyte Targeting , 2008, Journal of biomedicine & biotechnology.

[112]  David J Singel,et al.  Altering the strength of lectin binding interactions and controlling the amount of lectin clustering using mannose/hydroxyl-functionalized dendrimers. , 2003, Journal of the American Chemical Society.

[113]  Ya‐Ping Sun,et al.  Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens. , 2005, Chemical communications.

[114]  E. Matijević,et al.  Tailoring the particle size of monodispersed colloidal gold , 1999 .

[115]  I. García,et al.  Glyconanoparticles: multifunctional nanomaterials for biomedical applications. , 2010, Nanomedicine.

[116]  Bing Xu,et al.  Combining Fluorescent Probes and Biofunctional Magnetic Nanoparticles for Rapid Detection of Bacteria in Human Blood , 2006 .

[117]  Cristina Sisu,et al.  The Influence of Ligand Valency on Aggregation Mechanisms for Inhibiting Bacterial Toxins , 2009, Chembiochem : a European journal of chemical biology.

[118]  A. Campion,et al.  Surface-enhanced Raman scattering , 1998 .

[119]  V. Stojanoff,et al.  X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. , 1999, Science.

[120]  H. Toma,et al.  Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles , 2004 .

[121]  Shinsuke Sando,et al.  A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. , 2004, Journal of the American Chemical Society.

[122]  S. Nishimura,et al.  Inhibition of Adhesion of Type 1 Fimbriated Escherichia coli to Highly Mannosylated Ligands , 2002, Chembiochem : a European journal of chemical biology.

[123]  Yuh-Yih Chien,et al.  Carbohydrate‐Encapsulated Gold Nanoparticles for Rapid Target‐Protein Identification and Binding‐Epitope Mapping , 2005, Chembiochem : a European journal of chemical biology.

[124]  A. Hernando,et al.  Gold and gold-iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties. , 2006, The journal of physical chemistry. B.

[125]  M. Menéndez,et al.  Thermodynamic evidence for Ca2+-mediated self-aggregation of Lewis X gold glyconanoparticles. A model for cell adhesion via carbohydrate-carbohydrate interaction. , 2005, Journal of the American Chemical Society.

[126]  Rahul Raman,et al.  Structural insights into biological roles of protein-glycosaminoglycan interactions. , 2005, Chemistry & biology.

[127]  Chung-Yuan Mou,et al.  Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. , 2007, Nano letters.

[128]  R. Myers,et al.  Further studies on the binding characteristics of rabbit liver galactose/N-acetylgalactosamine-specific lectin. , 1982, Biochemistry.

[129]  A. Varki,et al.  Biological roles of oligosaccharides: all of the theories are correct , 1993, Glycobiology.

[130]  M. Sy,et al.  CD44 as a marker in human cancers. , 1997, Current opinion in oncology.

[131]  J. Rojo,et al.  Glycodendritic structures: promising new antiviral drugs. , 2004, The Journal of antimicrobial chemotherapy.

[132]  Mostafa A. El-Sayed,et al.  Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods† , 2003 .

[133]  Chia-Chun Chen,et al.  Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. , 2002, Journal of the American Chemical Society.

[134]  S. Hakomori,et al.  Glycosphingolipid antigens and cancer therapy. , 1997, Chemistry & biology.

[135]  L. Vannucci,et al.  Fluorescent Labelled Thiourea‐Bridged Glycodendrons , 2004, Chembiochem : a European journal of chemical biology.

[136]  Qingan Wang,et al.  Mannosylated G(0) Dendrimers with Nanomolar Affinities to Escherichia coli FimH , 2007, ChemMedChem.

[137]  Eric K. Woller,et al.  The lectin-binding properties of six generations of mannose-functionalized dendrimers. , 2002, Organic letters.

[138]  Tarasankar Pal,et al.  Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. , 2007, Chemical reviews.

[139]  Xiaohua Huang,et al.  Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications , 2009, Advanced materials.

[140]  S. Bhatia,et al.  Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging , 2008, Advanced materials.

[141]  C. Kaittanis,et al.  Dextran-coated gold nanoparticles for the assessment of antimicrobial susceptibility. , 2008, Analytical chemistry.

[142]  J. A. Jablonowski,et al.  Selectin—Carbohydrate Interactions: From Natural Ligands to Designed Mimics , 1998 .

[143]  Aseem Kumar,et al.  Cationic glyconanoparticles: their complexation with DNA, cellular uptake, and transfection efficiencies. , 2009, Bioconjugate chemistry.

[144]  C. V. van Boeckel,et al.  A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? , 2004, Angewandte Chemie.

[145]  É. Boisselier,et al.  Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. , 2010, Chemical reviews.

[146]  Meyya Meyyappan,et al.  Nanotechnology: Opportunities and Challenges , 2003 .

[147]  Mingyuan Gao,et al.  Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications , 2009 .

[148]  G. Magnusson,et al.  Di-, Tri-, and Tetravalent Dendritic Galabiosides That Inhibit Hemagglutination by Streptococcus suis at Nanomolar Concentration , 1997 .

[149]  M. Donnenberg,et al.  Internalization of Escherichia coli by human renal epithelial cells is associated with tyrosine phosphorylation of specific host cell proteins , 1997, Infection and immunity.

[150]  Hans-Joachim Gabius,et al.  Glycans: bioactive signals decoded by lectins. , 2008, Biochemical Society transactions.

[151]  E. Toone,et al.  The cluster glycoside effect. , 2002, Chemical reviews.

[152]  Shuming Nie,et al.  Receptor-Targeted Nanoparticles for In vivo Imaging of Breast Cancer , 2009, Clinical Cancer Research.

[153]  Guizard,et al.  Silica Coating on Colloidal Maghemite Particles. , 1999, Journal of colloid and interface science.

[154]  Shane L. Mangold,et al.  Cyanovirin-N binding to Manα1–2Man functionalized dendrimers , 2005 .

[155]  Carolyn R Bertozzi,et al.  Interfacing carbon nanotubes with living cells. , 2006, Journal of the American Chemical Society.

[156]  Jinwoo Cheon,et al.  Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. , 2005, Journal of the American Chemical Society.

[157]  Paola Laurino,et al.  Synthesis of carbohydrate-functionalized quantum dots in microreactors. , 2010, Angewandte Chemie.

[158]  Gang-yu Liu,et al.  Synthesis of Gold Glyconanoparticles and Biological Evaluation of Recombinant Gp120 Interactions , 2003 .

[159]  K. Kasai,et al.  Determination of the affinity constants of concanavalin A for monosaccharides by fluorescence affinity probe capillary electrophoresis. , 1995, Analytical biochemistry.

[160]  S. Barthel,et al.  Targeting selectins and selectin ligands in inflammation and cancer , 2007, Expert opinion on therapeutic targets.

[161]  Su Seong Lee,et al.  Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. , 2001, Journal of the American Chemical Society.

[162]  A. Verkleij,et al.  Gold Glyconanoparticles as Probes to Explore the Carbohydrate‐Mediated Self‐Recognition of Marine Sponge Cells , 2005, Chembiochem : a European journal of chemical biology.

[163]  Philippe Robert,et al.  Recent advances in iron oxide nanocrystal technology for medical imaging. , 2006, Advanced drug delivery reviews.

[164]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[165]  Carolyn R Bertozzi,et al.  Biocompatible carbon nanotubes generated by functionalization with glycodendrimers. , 2008, Angewandte Chemie.

[166]  Mei-Chun Tseng,et al.  Functionalized magnetic nanoparticles for small-molecule isolation, identification, and quantification. , 2007, Analytical chemistry.

[167]  David C. Zhu,et al.  Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. , 2010, Bioconjugate chemistry.

[168]  J. Hacker,et al.  Inhibition of P-fimbriated Escherichia coli adhesion by multivalent galabiose derivatives studied by a live-bacteria application of surface plasmon resonance. , 2007, The Journal of antimicrobial chemotherapy.

[169]  M. Alonso,et al.  Bioadhesive hyaluronan–chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue , 2008, Gene Therapy.

[170]  Chi‐Huey Wong,et al.  Iron oxide/gold core/shell nanoparticles for ultrasensitive detection of carbohydrate-protein interactions. , 2009, Analytical chemistry.

[171]  J. Jiménez-Barbero,et al.  Chemical Biology of the Sugar Code , 2004, Chembiochem : a European journal of chemical biology.

[172]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[173]  N. Voelcker,et al.  Non-covalent polyvalent ligands by self-assembly of small glycodendrimers: a novel concept for the inhibition of polyvalent carbohydrate-protein interactions in vitro and in vivo. , 2005, Chemistry.

[174]  Yuan-chuan Lee,et al.  Carbohydrate-Protein Interactions: Basis of Glycobiology , 1995 .

[175]  Xuefei Huang,et al.  Strategies in Oligosaccharide Synthesis , 2007 .

[176]  Gabriel A. Rabinovich,et al.  Turning 'sweet' on immunity: galectin–glycan interactions in immune tolerance and inflammation , 2009, Nature Reviews Immunology.

[177]  P. Chou,et al.  Probing Lectin and Sperm with Carbohydrate‐Modified Quantum Dots , 2005, Chembiochem : a European journal of chemical biology.

[178]  Q. Pankhurst,et al.  Progress in applications of magnetic nanoparticles in biomedicine , 2009 .

[179]  U. Galili,et al.  The Galα1,3Galβ1,4GlcNAc-R (α-Gal) epitope: A carbohydrate of unique evolution and clinical relevance , 2008 .

[180]  V. Křen,et al.  Toward an optimal oligosaccharide ligand for rat natural killer cell activation receptor NKR-P1. , 2001, Biochemical and biophysical research communications.

[181]  R. Mak,et al.  Pathogenesis of urinary tract infection: an update , 2006, Current opinion in pediatrics.

[182]  W. Willats,et al.  Solid-phase chemical tools for glycobiology. , 2006, Carbohydrate research.

[183]  R. Narain,et al.  Biotinylated glyco-functionalized quantum dots: synthesis, characterization, and cytotoxicity studies. , 2009, Bioconjugate chemistry.

[184]  Ya-nan Guo,et al.  Preparation and Characterization of Heparin‐Stabilized Gold Nanoparticles , 2008 .

[185]  Taeghwan Hyeon,et al.  Bioinspired Surface Immobilization of Hyaluronic Acid on Monodisperse Magnetite Nanocrystals for Targeted Cancer Imaging , 2007, Advanced materials.

[186]  G. Frens Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions , 1973 .

[187]  R. Roy,et al.  Macromolecular recognition: effect of multivalency in the inhibition of binding of yeast mannan to concanavalin A and pea lectins by mannosylated dendrimers. , 1996, Bioorganic & medicinal chemistry.

[188]  J. Rojo,et al.  Mannosyl Glycodendritic Structure Inhibits DC-SIGN-Mediated Ebola Virus Infection in cis and in trans , 2003, Antimicrobial Agents and Chemotherapy.

[189]  M. Hájek,et al.  D-mannose-modified iron oxide nanoparticles for stem cell labeling. , 2007, Bioconjugate chemistry.

[190]  J. Rojo,et al.  Gold Glyconanoparticles as Water-Soluble Polyvalent Models To Study Carbohydrate Interactions. , 2001, Angewandte Chemie.

[191]  Chad A Mirkin,et al.  Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. , 2006, Journal of the American Chemical Society.

[192]  P. Seeberger,et al.  In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. , 2009, Journal of the American Chemical Society.

[193]  Byung-Soo Kim,et al.  Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging. , 2009, ACS nano.

[194]  Chi‐Huey Wong,et al.  Emerging themes in medicinal glycoscience , 2000, Nature Biotechnology.

[195]  Ya‐Ping Sun,et al.  Single-walled carbon nanotube as a unique scaffold for the multivalent display of sugars. , 2008, Biomacromolecules.

[196]  C. Lingwood,et al.  Oligosaccharide receptors for bacteria: a view to a kill. , 1998, Current opinion in chemical biology.

[197]  Haixiong Ge,et al.  Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. , 2002, Biomaterials.

[198]  M. de la Fuente,et al.  Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. , 2008, Investigative ophthalmology & visual science.

[199]  S. Penadés,et al.  A model system mimicking glycosphingolipid clusters to quantify carbohydrate self-interactions by surface plasmon resonance. , 2002, Angewandte Chemie.

[200]  A. Basu,et al.  Probing the lactose.GM3 carbohydrate-carbohydrate interaction with glycodendrimers. , 2009, Organic letters.

[201]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.