Heat and mass transfer in a non-isothermal fixed bed solid adsorbent reactor: a uniform pressure-non-uniform temperature case

Abstract A uniform pressure model is presented to describe the heat and mass transfer in a fixed bed of solid adsorbent in a finned reactor. This model neglects the resistance to mass diffusion but takes into account the resistances to heat diffusion through two coefficients: the heat conductivity of the adsorbent bed and the heat transfer coefficient between the adsorbent bed and the fins. An experiment has been conducted to validate this model and the two heat transfer coefficients are obtained by an identification technique. When the temperature of the closed reactor is modified on one side of the reactor, large temperature inhomogeneities inside the reactor are observed and mass transfer occurs through a heat pipe effect: the model explains that effect which is observed experimentally. That uniform pressure model is more adapted to describe the history of solid adsorbent reactors used in thermal processes than uniform temperature models proposed by other authors.