On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain

The integrability aspects of a classical one‐dimensional continuum isotropic biquadratic Heisenberg spin chain in its continuum limit up to order [O(a4)] in the lattice parameter ‘‘a’’ are studied. Through a differential geometric approach, the dynamical equation for the spin chain is expressed in the form of a higher‐order generalized nonlinear Schrodinger equation (GNLSE). An integrable biquadratic chain that is a deformation of the lower‐order continuum isotropic spin chain, is identified by carrying out a Painleve singularity structure analysis on the GNLSE (also through gauge analysis) and its properties are discussed briefly. For the nonintegrable chain, the perturbed soliton solution is obtained through a multiple scale analysis.

[1]  M. Kruskal,et al.  Singularity structure analysis of the continuum Heisenberg spin chain with anisotropy and transverse field: Nonintegrability and chaos , 1992 .

[2]  M. Lakshmanan,et al.  Effect of discreteness on the continuum limit of the Heisenberg spin chain , 1988 .

[3]  N. Papanicolaou Unusual phases in quantum spin-1 systems , 1988 .

[4]  Lund,et al.  Solitons in planar ferromagnets with biquadratic exchange. , 1986, Physical review. B, Condensed matter.

[5]  A. Rangwala,et al.  Complete soliton solutions of the ZS/AKNS equations of the inverse scattering method , 1985 .

[6]  Anjan Kundu,et al.  Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations , 1984 .

[7]  K. Hida,et al.  Soliton dynamics in the discrete classical Heisenberg chain. Velocity modulation and stochastic depinning , 1983 .

[8]  M. Lakshmanan,et al.  Perturbation of solitons in the classical continuum isotropic Heisenberg spin system , 1983 .

[9]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[10]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[11]  Yuji Kodama,et al.  Perturbations of solitons and solitary waves , 1981 .

[12]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[13]  H. Fogedby Solitons and magnons in the classical Heisenberg chain , 1980 .

[14]  N. Papanicolaou,et al.  Semi-classical spectrum of the continuous Heisenberg spin chain , 1979 .

[15]  V. Zakharov,et al.  Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet , 1979 .

[16]  L. Takhtajan Integration of the Continuous Heisenberg Spin Chain Through the Inverse Scattering Method , 1977 .

[17]  M. Lakshmanan,et al.  Continuum spin system as an exactly solvable dynamical system , 1977 .

[18]  B. Sutherland Model for a multicomponent quantum system , 1975 .

[19]  M. Wadati,et al.  Simple Derivation of Bäcklund Transformation from Riccati Form of Inverse Method , 1975 .

[20]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[21]  Hsing‐Hen Chen General Derivation of Bäcklund Transformations from Inverse Scattering Problems , 1974 .