Femtosecond X-Ray Diffraction of Laser-Shocked Forsterite (Mg 2 SiO 4 ) to 122 GPa

ma-Abstract The response of forsterite, Mg 2 SiO 4 , under dynamic compression is of fundamental importance for understanding its phase transformations and high-pressure behavior. Here, we have carried out an in situ X-ray diffraction study of laser-shocked polycrystalline and single-crystal forsterite ( a -

[1]  H. J. Lee,et al.  Direct Observation of Shock‐Induced Disordering of Enstatite Below the Melting Temperature , 2020, Geophysical Research Letters.

[2]  D. Sokaras,et al.  In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures , 2020, Proceedings of the National Academy of Sciences.

[3]  B. Remington,et al.  Nonisentropic Release of a Shocked Solid. , 2019, Physical review letters.

[4]  H. J. Lee,et al.  In situ observation of a phase transition in silicon carbide under shock compression using pulsed x-ray diffraction , 2019, Physical Review B.

[5]  Yun Liu,et al.  A Metastable Fo-III Wedge in Cold Slabs Subducted to the Lower Part of the Mantle Transition Zone: A Hypothesis Based on First-Principles Simulations , 2019, Minerals.

[6]  H. J. Lee,et al.  Phase transition lowering in dynamically compressed silicon , 2018, Nature Physics.

[7]  N. Sinclair,et al.  In Situ Observations of Phase Changes in Shock Compressed Forsterite , 2018, Geophysical Research Letters.

[8]  B. Ziaja,et al.  Various damage mechanisms in carbon and silicon materials under femtosecond X-ray irradiation , 2018, 1805.07524.

[9]  G. Shen,et al.  Pressure-induced structural change in MgSiO3 glass at pressures near the Earth’s core–mantle boundary , 2018, Proceedings of the National Academy of Sciences.

[10]  K. Kurosawa,et al.  Effects of Friction and Plastic Deformation in Shock‐Comminuted Damaged Rocks on Impact Heating , 2018, 1801.01100.

[11]  B. Nagler,et al.  Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source. , 2017, The Review of scientific instruments.

[12]  A. Zeidler,et al.  Pressure-driven transformation of the ordering in amorphous network-forming materials , 2016 .

[13]  Takeshi Sakai,et al.  Experimental and theoretical thermal equations of state of MgSiO3 post-perovskite at multi-megabar pressures , 2016, Scientific Reports.

[14]  Takashi Kameshima,et al.  Observation of femtosecond X-ray interactions with matter using an X-ray–X-ray pump–probe scheme , 2016, Proceedings of the National Academy of Sciences.

[15]  V. Prakapenka,et al.  DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration , 2015 .

[16]  Bob Nagler,et al.  The Matter in Extreme Conditions instrument at the Linac Coherent Light Source , 2015, Journal of synchrotron radiation.

[17]  T. Duffy,et al.  Phase transitions in orthopyroxene (En90) to 49GPa from single-crystal X-ray diffraction , 2014 .

[18]  D. Choudhuri,et al.  Shock compression of aluminum single crystals to 70 GPa: Role of crystalline anisotropy , 2013 .

[19]  Michael D. Furnish,et al.  Thermodynamics for (Mg, Fe)2SiO4 from the Hugoniot , 2013 .

[20]  A. Kirfel,et al.  Volume thermal expansion and related thermophysical parameters in the Mg, Fe olivine solid-solution series , 2012 .

[21]  Y. Ohishi,et al.  P‐V‐T equation of state of MgSiO3 perovskite based on the MgO pressure scale: A comprehensive reference for mineralogy of the lower mantle , 2012 .

[22]  Robert E. Rudd,et al.  High strain-rate plastic flow in Al and Fe , 2011 .

[23]  Hugh T. Philipp,et al.  Pixel array detector for X-ray free electron laser experiments , 2011 .

[24]  Y. Ohishi,et al.  The Structure of Iron in Earth’s Inner Core , 2010, Science.

[25]  G. Steinle‐Neumann,et al.  Mg2SiO4 liquid under high pressure from molecular dynamics , 2008 .

[26]  T. Yamanaka,et al.  Structural transition of post-spinel phases CaMn2O4, CaFe2O4, and CaTi2O4 under high pressures up to 80 GPa , 2008 .

[27]  D. Frost The Upper Mantle and Transition Zone , 2008 .

[28]  C. Benmore,et al.  In situ diffraction studies of magnesium silicate liquids , 2008 .

[29]  S. Sikka,et al.  Shock induced amorphization of materials , 2008 .

[30]  L. Stixrude,et al.  Thermodynamics, structure, dynamics, and freezing of Mg2SiO4 liquid at high pressure , 2008 .

[31]  T. Ahrens,et al.  Thermodynamic properties of Mg2SiO4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite , 2007 .

[32]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[33]  M. Min,et al.  The building blocks of planets within the ‘terrestrial’ region of protoplanetary disks , 2004, Nature.

[34]  A. Oganov,et al.  Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer , 2004, Nature.

[35]  T. Ahrens,et al.  Shock‐compressed MgSiO3 glass, enstatite, olivine, and quartz: Optical emission, temperatures, and melting , 2004 .

[36]  Ann N Nguyen,et al.  Discovery of Ancient Silicate Stardust in a Meteorite , 2004, Science.

[37]  Thomas J. Ahrens,et al.  Dynamic tensile strength of terrestrial rocks and application to impact cratering , 2004 .

[38]  I. Shinno A Raman spectroscopic study of shocked forsterite. , 2002 .

[39]  H. Dai,et al.  In Situ Observation of a Phase Transition in a Thin Molecular Film by Optical Second Harmonic Generation , 2000 .

[40]  M. Boustie,et al.  Laser shock experiments with nanoseconds pulses: a new tool for the reproduction of shock defects in olivine , 1999 .

[41]  M. Hanner The Silicate Material in Comets , 1999 .

[42]  D. E. Grady,et al.  Shock-wave compression of brittle solids , 1998 .

[43]  Boehler,et al.  Solidus of Earth's deep mantle , 1998, Science.

[44]  P. Richet,et al.  Pressure-induced amorphization of minerals; a review , 1997 .

[45]  Vladimir E. Fortov,et al.  Spall fracture properties of aluminum and magnesium at high temperatures , 1996 .

[46]  A. E. Ringwood,et al.  Phase transformations and their bearing on the constitution and dynamics of the mantle , 1991 .

[47]  T. Katsura,et al.  The system Mg2SiO4‐Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel , 1989 .

[48]  Michael D. Furnish,et al.  Shock loading of single‐crystal olivine in the 100–200 GPa range , 1986 .

[49]  H. Takei,et al.  Association Reaction in Forsterite Under Shock Compression , 1981, Science.

[50]  T. Goto,et al.  Shock compression measurements of single‐crystal forsterite in the pressure range 15–93 GPa , 1981 .

[51]  R. Jeanloz Shock effects in olivine and implications for Hugoniot data , 1980 .

[52]  Thomas J. Ahrens,et al.  Shock wave compression of single-crystal forsterite , 1979 .

[53]  D. E. Grady,et al.  Hugoniot sound velocities and phase transformations in two silicates , 1975 .

[54]  B. Mason Olivine composition in chondrites , 1963 .

[55]  A. Zaoui,et al.  High-pressure phase transitions of forsterite from first-principles , 2020 .

[56]  T. Duffy,et al.  Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling , 2014 .

[57]  D. Errandonea AB2O4 Compounds at High Pressures , 2014 .

[58]  Y.,et al.  Structural transition of post-spinel phases CaMn , 2008 .

[59]  P. Beck,et al.  High-pressure mineral assemblages in shocked meteorites and shocked terrestrial rocks: Mechanisms of phase transformations and constraints to pressure and temperature histories , 2007 .

[60]  Bayerisches Geoinstitut Shock metamorphism of some minerals : Basic introduction and microstructural observations , 2002 .

[61]  R. Hazen,et al.  Comparative crystal chemistry of orthosilicate minerals , 2000 .

[62]  Robert M. Hazen,et al.  Comparative Crystal Chemistry of Dense Oxide Minerals , 2000 .

[63]  I. Brevik,et al.  THERMODYNAMIC PROPERTIES OF THE , 1998 .

[64]  S. Sikka,et al.  Pressure induced amorphization of materials , 1996 .

[65]  Stephen M. Lane,et al.  HYADES—A plasma hydrodynamics code for dense plasma studies , 1994 .

[66]  D. Grady,et al.  Analysis of Shock Wave Structure in Single-Crystal Olivine Using Visar , 1986 .

[67]  J. P. Watt,et al.  Shock compression of single-crystal forsterite , 1983 .

[68]  J. Bauer Experimental shock metamorphism of mono- and polycrystalline olivine - A comparative study , 1979 .

[69]  U. Hornemann,et al.  Shock-induced planar deformation structures in experimentally shock-loaded olivines and in olivines from chondritic meteorites , 1969 .