The mechanism of the sodiation and desodiation in Super P carbon electrode for sodium-ion battery

Abstract The sodiation and desodiation of sodium (Na) into the Super-P carbon anode material were investigated using electrochemical analyses, high-resolution transmission electron microscopy (HRTEM), and neutron powder diffraction (NPD). In the sodiated Super-P carbon, sodium is stored both in the graphite interlayer space of carbon nano-particles and pores between the particles. Sodium metal clusters found in micro-pores between the carbon particles are responsible for the large irreversible capacity of the Super-P electrode. The graphite interlayer distance increases on sodiation from 3.57 A to two distinct values of ∼3.84 and 4.41 A. The mechanism of the process is discussed.

[1]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[2]  Christopher S. Johnson,et al.  Spherical Carbon as a New High-Rate Anode for Sodium-ion Batteries , 2014 .

[3]  Wei Chen,et al.  Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries , 2015 .

[4]  R. Kanno,et al.  Structure Characterization and Lithiation Mechanism of Nongraphitized Carbon for Lithium Secondary Batteries , 2006 .

[5]  T. Gustafsson,et al.  Neutron-scattering studies on carbon anode materials used in lithium-ion batteries , 2002 .

[6]  S. Ogale,et al.  Indanthrone derived disordered graphitic carbon as promising insertion anode for sodium ion battery with long cycle life , 2014 .

[7]  Kazuma Gotoh,et al.  Properties of a novel hard-carbon optimized to large size Li ion secondary battery studied by 7Li NMR , 2006 .

[8]  Atsuo Yamada,et al.  Ab initio study of sodium intercalation into disordered carbon , 2015 .

[9]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[10]  J. Tirado,et al.  Negative Electrodes for Lithium- and Sodium-Ion Batteries Obtained by Heat-Treatment of Petroleum Cokes below 1000°C , 2002 .

[11]  Bingwen Hu,et al.  GeO2 decorated reduced graphene oxide as anode material of sodium ion battery , 2015 .

[12]  K. Kubota,et al.  Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries , 2014 .

[13]  D. Billaud,et al.  Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4–ethylene carbonate electrolyte , 1999 .

[14]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[15]  Marca M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[16]  S. Dou,et al.  Reduced graphene oxide with superior cycling stability and rate capability for sodium storage , 2013 .

[17]  Ricardo Alcántara,et al.  Carbon black: a promising electrode material for sodium-ion batteries , 2001 .

[18]  Kazuma Gotoh,et al.  NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery , 2013 .

[19]  J. Sangster,et al.  C-Na (Carbon-Sodium) System , 2007 .

[20]  Linghui Yu,et al.  Hollow Carbon Nanospheres with Superior Rate Capability for Sodium‐Based Batteries , 2012 .

[21]  E. Zhecheva,et al.  EPR study on petroleum cokes annealed at different temperatures and used in lithium and sodium batteries , 2002 .

[22]  M. Pyo,et al.  Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries , 2015 .

[23]  Z. Ogumi,et al.  7Li NMR studies on a lithiated non-graphitizable carbon fibre at low temperatures , 1997 .

[24]  Xiulei Ji,et al.  Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements , 2014 .

[25]  Lixia Yuan,et al.  Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance , 2013 .

[26]  Ya‐Xia Yin,et al.  A Sandwich‐Like Hierarchically Porous Carbon/Graphene Composite as a High‐Performance Anode Material for Sodium‐Ion Batteries , 2014 .

[27]  D. Stevens,et al.  An In Situ Small‐Angle X‐Ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell , 2000 .

[28]  Jun Liu,et al.  Sodium ion insertion in hollow carbon nanowires for battery applications. , 2012, Nano letters.

[29]  Philipp Adelhelm,et al.  Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies , 2011 .

[30]  Yan Yu,et al.  Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. , 2014, Nanoscale.

[31]  Youngsik Kim,et al.  Commercial and research battery technologies for electrical energy storage applications , 2015 .

[32]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[33]  Jia Ding,et al.  High-density sodium and lithium ion battery anodes from banana peels. , 2014, ACS nano.

[34]  P. Biensan,et al.  A 7Li NMR study of a hard carbon for lithium–ion rechargeable batteries , 2000 .

[35]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.