A review of Student’s t distribution and its generalizations

The Student’s t distribution is the most popular model for economic and financial data. In recent years, many generalizations of the Student’s t distribution have been proposed. This paper provides a review of generalizations, including software available for them. A real data application is presented to compare some of the reviewed distributions.

[1]  R. Beaver,et al.  Skewed multivariate models related to hidden truncation and/or selective reporting , 2002 .

[2]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[3]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[4]  S. Nadarajah On the generalized t(GT) distribution , 2008 .

[5]  A. Jamalizadeh,et al.  Properties and Inference for a New Class of Skew-t Distributions , 2016, Commun. Stat. Simul. Comput..

[6]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[7]  Manuel Galea,et al.  Robust estimation of systematic risk using the t distribution in the chilean stock markets , 2003 .

[8]  David R. Anderson,et al.  Multimodel Inference , 2004 .

[9]  Kjersti Aas,et al.  The Generalized Hyperbolic Skew Student’s t-Distribution , 2006 .

[10]  James B. McDonald,et al.  Partially Adaptive Estimation of Regression Models via the Generalized T Distribution , 1988, Econometric Theory.

[11]  Stelios Psarakis,et al.  The Folded T Distribution , 1990 .

[12]  M. Doostparast,et al.  Balakrishnan Skew-t Distribution and Associated Statistical Characteristics , 2014 .

[13]  Saumyadipta Pyne,et al.  Maximum likelihood inference for mixtures of skew Student-t-normal distributions through practical EM-type algorithms , 2012, Stat. Comput..

[14]  S. Narula,et al.  Probability Density Plots of the Non-central t-Distribution , 1974 .

[15]  M. C. Jones,et al.  A skew extension of the t‐distribution, with applications , 2003 .

[16]  Jonathan A. Tawn,et al.  A generalised Student's t-distribution , 2013 .

[17]  M. Steel,et al.  On Bayesian Modelling of Fat Tails and Skewness , 1998 .

[18]  Yixin Fang,et al.  Asymptotic Equivalence between Cross-Validations and Akaike Information Criteria in Mixed-Effects Models , 2021 .

[19]  Mohammad Ahsanullah,et al.  Normal and Student´s t Distributions and Their Applications , 2014 .

[20]  Lingji Kong,et al.  A Family of Generalized Beta Distributions for Income , 2007 .

[21]  M. Akahira A higher order approximation to a percentage point of the non–central t-distribution , 1995 .

[22]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[23]  A Tail Quantile Approximation for the Student t Distribution , 2012 .

[24]  Abeer M. Hasan,et al.  A Study of non-central Skew t Distributions and their Applications in Data Analysis and Change Point Detection , 2013 .

[25]  Daniel T. Cassidy,et al.  Pricing European options with a log Students t-distribution: A Gosset formula , 2009, 0906.4092.

[26]  Heleno Bolfarine,et al.  Large-Sample Inference for the Epsilon-Skew-t Distribution , 2007 .

[27]  H. Akaike A new look at the statistical model identification , 1974 .

[28]  Hea-Jung Kim,et al.  Moments of truncated Student-t distribution , 2008 .

[29]  A new class of skew-symmetric distributions and related families , 2013 .

[30]  A. Kleefeld,et al.  Folded and log-folded-t distributions as models for insurance loss data , 2009 .

[31]  Marc S. Paolella,et al.  Conditional density and value‐at‐risk prediction of Asian currency exchange rates , 2000 .

[32]  Heleno Bolfarine,et al.  Skew‐symmetric distributions generated by the distribution function of the normal distribution , 2007 .

[33]  Dongming Zhu,et al.  A Generalized Asymmetric Student-t Distribution with Application to Financial Econometrics , 2009 .

[34]  Y. Ku Student-t distribution based VAR-MGARCH: an application of the DCC model on international portfolio risk management , 2008 .

[35]  J. K. Ord,et al.  The Discrete Student's $t$ Distribution , 1968 .

[36]  W. N. Street,et al.  Financial Data and the Skewed Generalized T Distribution , 1998 .

[37]  O. Arslan,et al.  Alpha-Skew Generalized t Distribution , 2015 .

[38]  M. C. Jones,et al.  Sinh-arcsinh distributions , 2009 .

[39]  Student,et al.  THE PROBABLE ERROR OF A MEAN , 1908 .

[40]  Arthur Pewsey,et al.  Skew t distributions via the sinh-arcsinh transformation , 2011 .