Na3+xMxP1−xS4 (M = Ge4+, Ti4+, Sn4+) enables high rate all-solid-state Na-ion batteries Na2+2δFe2−δ(SO4)3|Na3+xMxP1−xS4|Na2Ti3O7

Electrolytes in current Na-ion batteries are mostly based on the same fundamental chemistry as those in Li-ion batteries – a mixture of flammable liquid cyclic and linear organic carbonates leading to the same safety concerns especially during fast charging. All-solid-state Na-ion rechargeable batteries utilizing non-flammable ceramic Na superionic conductor electrolytes are a promising alternative. Among the known sodium conducting electrolytes the cubic Na3PS4 phase has relatively high sodium ion conductivity exceeding 10−4 S cm−1 at room temperature. Here we systematically study the doping of Na3PS4 with Ge4+, Ti4+, Sn4+ and optimise the processing of these phases. A maximum ionic conductivity of 2.5 × 10−4 S cm−1 is achieved for Na3.1Sn0.1P0.9S4. Utilising this fast Na+ ion conductor, a new class of all-solid-state Na2+2δFe2−δ(SO4)3|Na3+xMxP1−xS4 (M = Ge4+, Ti4+, Sn4+) (x = 0, 0.1)|Na2Ti3O7 sodium-ion secondary batteries is demonstrated that is based on earth-abundant safe materials and features high rate capability even at room temperature. All-solid-state Na2+2δFe2−δ(SO4)3|Na3+xMxP1−xS4|Na2Ti3O7 cells with the newly prepared electrolyte exhibited charge–discharge cycles at room temperature between 1.5 V and 4.0 V. At low rates the initial capacity matches the theoretical capacity of ca. 113 mA h g−1. At 2C rate the first discharge capacity at room temperature is still 83 mA h per gram of Na2+2δFe2−δ(SO4)3 and at 80 °C it rises to 109 mA h per gram with 80% capacity retention over 100 cycles.

[1]  J. Jumas,et al.  Etude de la tétracoordination de l'etain dans deux orthothiostannates: Na4SnS4 et Ba2SnS4 (α) , 1975 .

[2]  Michel Ribes,et al.  Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2SXS2 (XSi; Ge), Na2SP2S5 and Li2SGeS2 systems , 1980 .

[3]  L. Boehm,et al.  A new method for the preparation of fast-conducting, reactive glass systems , 1981 .

[4]  Darstellung und Kristallstruktur von Na4GeSe4: Ein neues ortho-Selenogermanat(IV) , 1985 .

[5]  M. Jansen,et al.  Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate , 1992 .

[6]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[7]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[8]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[9]  John B. Goodenough,et al.  Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation , 1997 .

[10]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[11]  Mariette Hellenbrandt,et al.  The Inorganic Crystal Structure Database (ICSD)—Present and Future , 2004 .

[12]  Taku Oshima,et al.  Development of Sodium‐Sulfur Batteries , 2005 .

[13]  Jou-Hyeon Ahn,et al.  Room-temperature solid-state sodium/sulfur battery , 2006 .

[14]  Jou-Hyeon Ahn,et al.  Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte , 2007 .

[15]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[16]  Tae-Hyun Nam,et al.  The discharge properties of Na/Ni3S2 cell at ambient temperature , 2008 .

[17]  A. Virkar,et al.  Low temperature electrochemical cells with sodium β″-alumina solid electrolyte (BASE) , 2008 .

[18]  H. Ahn,et al.  The short-term cycling properties of Na/PVdF/S battery at ambient temperature , 2008 .

[19]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[20]  Khiem Trad,et al.  NaMnFe2(PO4)3 Alluaudite Phase: Synthesis, Structure, and Electrochemical Properties As Positive Electrode in Lithium and Sodium Batteries , 2010 .

[21]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[22]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[23]  Shinichi Komaba,et al.  Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries , 2011 .

[24]  Jean-Marie Tarascon,et al.  NaxVO2 as possible electrode for Na-ion batteries , 2011 .

[25]  C. Delmas,et al.  Electrochemical Na-Deintercalation from NaVO2 , 2011 .

[26]  Stefan Adams,et al.  High power lithium ion battery materials by computational design , 2011 .

[27]  Stefan Adams,et al.  Simulated defect and interface engineering for high power Li electrode materials , 2011 .

[28]  Mehdi Hosseinifar,et al.  High temperature versus low temperature Zebra (Na/NiCl2) cell performance , 2012 .

[29]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[30]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[31]  Yuki Yamada,et al.  Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries , 2012 .

[32]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[33]  Chao Luo,et al.  Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. , 2013, Nanoscale.

[34]  Byung Gon Kim,et al.  Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery , 2013, Proceedings of the National Academy of Sciences.

[35]  R. P. Rao,et al.  Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction , 2013 .

[36]  K. Kang,et al.  A new high-energy cathode for a Na-ion battery with ultrahigh stability. , 2013, Journal of the American Chemical Society.

[37]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[38]  Gerbrand Ceder,et al.  Sidorenkite (Na3MnPO4CO3), a New Intercalation Cathode Material for Na-Ion Batteries , 2013 .

[39]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[40]  J. Choi,et al.  Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study. , 2013, Journal of the American Chemical Society.

[41]  Palani Balaya,et al.  Na2Ti3O7: an intercalation based anode for sodium-ion battery applications , 2013 .

[42]  Yong Yang,et al.  Exploiting Na2MnPO4F as a high-capacity and well-reversible cathode material for Na-ion batteries , 2014 .

[43]  Yunhui Gong,et al.  An All‐Ceramic Solid‐State Rechargeable Na+‐Battery Operated at Intermediate Temperatures , 2014 .

[44]  A. Hayashi,et al.  High sodium ion conductivity of glass-ceramic electrolytes with cubic Na 3 PS 4 , 2014 .

[45]  R. P. Rao,et al.  The unusual role of Li6PS5Br in all-solid-state CuS/Li6PS5Br/In–Li batteries , 2014 .

[46]  V. Viallet,et al.  An all-solid state NASICON sodium battery operating at 200 °C , 2014 .

[47]  A. Hayashi,et al.  Sulfide Glass‐Ceramic Electrolytes for All‐Solid‐State Lithium and Sodium Batteries , 2014 .

[48]  R. P. Rao,et al.  Understanding Ionic Conduction and Energy Storage Materials with Bond-Valence-Based Methods , 2014 .

[49]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[50]  P. Prosini,et al.  Sodium extraction from sodium iron phosphate with a Maricite structure , 2014 .

[51]  A. Yamada,et al.  t‐Na2(VO)P2O7: A 3.8 V Pyrophosphate Insertion Material for Sodium‐Ion Batteries , 2014 .

[52]  R. P. Rao,et al.  High capacity all-solid-state Cu–Li2S/Li6PS5Br/In batteries , 2014 .

[53]  Masahiro Tatsumisago,et al.  Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes , 2014 .

[54]  A. Hayashi,et al.  All-solid-state sodium batteries using amorphous TiS 3 electrode with high capacity , 2015 .

[55]  Haomin Chen,et al.  Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. , 2015, Physical chemistry chemical physics : PCCP.

[56]  Hyunchul Kim,et al.  Sodium intercalation chemistry in graphite , 2015 .

[57]  Graeme Henkelman,et al.  Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. , 2015, Journal of the American Chemical Society.

[58]  B. Cheng,et al.  Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries , 2015 .

[59]  N. Sharma,et al.  Introducing a 0.2 V sodium-ion battery anode: The Na2Ti3O7 to Na3 − xTi3O7 pathway , 2015 .

[60]  Lee Loong Wong,et al.  Sodium-ion diffusion mechanisms in the low cost high voltage cathode material Na(2+δ)Fe(2-δ/2)(SO4)3. , 2015, Physical chemistry chemical physics : PCCP.

[61]  A. Yamada,et al.  Off‐Stoichiometry in Alluaudite‐Type Sodium Iron Sulfate Na2+2xFe2−x(SO4)3 as an Advanced Sodium Battery Cathode Material , 2015 .

[62]  Li-Min Wang,et al.  Na3PSe4: A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity , 2015 .

[63]  J. Tarascon,et al.  Taking steps forward in understanding the electrochemical behavior of Na2Ti3O7 , 2015 .

[64]  K. Ramesha,et al.  Framework structured Na4Mn4Ti5O18 as an electrode for Na-ion storage hybrid devices. , 2015, Physical chemistry chemical physics : PCCP.

[65]  Docheon Ahn,et al.  Anomalous Jahn–Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries , 2015 .

[66]  Shyue Ping Ong,et al.  Role of Na+ Interstitials and Dopants in Enhancing the Na+ Conductivity of the Cubic Na3PS4 Superionic Conductor , 2015 .

[67]  Kyung Yoon Chung,et al.  NaCrO2 cathode for high-rate sodium-ion batteries , 2015 .

[68]  Z. Deng,et al.  Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor , 2016, Scientific Reports.

[69]  Seung M. Oh,et al.  Na3 SbS4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[70]  Gerbrand Ceder,et al.  Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na3PSe4 , 2016 .

[71]  M. Wagemaker,et al.  Diffusion Mechanism of the Sodium-Ion Solid Electrolyte Na3PS4 and Potential Improvements of Halogen Doping , 2016 .

[72]  W. Luo,et al.  Na-Ion Battery Anodes: Materials and Electrochemistry. , 2016, Accounts of chemical research.

[73]  Kent J. Griffith,et al.  Sodium Intercalation Mechanism of 3.8 V Class Alluaudite Sodium Iron Sulfate , 2016 .