Global exponential stability of periodic solutions to a delay Lasota-Wazewska model with discontinuous harvesting

[1]  Michel Iskin da Silveira Costa,et al.  Harvesting induced fluctuations: insights from a threshold management policy. , 2007 .

[2]  Yanni Xiao,et al.  Non-smooth plant disease models with economic thresholds. , 2013, Mathematical biosciences.

[3]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[4]  S. Ruan,et al.  Predator-prey models with delay and prey harvesting , 2001, Journal of mathematical biology.

[5]  Guirong Liu,et al.  Existence and global attractivity of unique positive periodic solution for a Lasota–Wazewska model , 2006 .

[6]  Gani Tr. Stamov On the existence of almost periodic solutions for the impulsive Lasota-Wazewska model , 2009, Appl. Math. Lett..

[7]  Yongzhen Pei,et al.  Evolutionary consequences of harvesting for a two-zooplankton one-phytoplankton system , 2012 .

[8]  Jurang Yan Existence and global attractivity of positive periodic solution for an impulsive Lasota–Wazewska model , 2003 .

[9]  Sanyi Tang,et al.  Sliding Bifurcations of Filippov Two Stage Pest Control Models with Economic Thresholds , 2012, SIAM J. Appl. Math..

[10]  Zhenyuan Guo,et al.  Impact of discontinuous harvesting on fishery dynamics in a stock-effort fishing model , 2015, Commun. Nonlinear Sci. Numer. Simul..

[11]  Dongmei Xiao,et al.  Bifurcations of a Ratio-Dependent Predator-Prey System with Constant Rate Harvesting , 2005, SIAM J. Appl. Math..

[12]  Zhenyuan Guo,et al.  Impact of discontinuous treatments on disease dynamics in an SIR epidemic model. , 2011, Mathematical biosciences and engineering : MBE.

[13]  Stephen Lynch,et al.  Analysis of a Blood Cell Population Model , 2005, Int. J. Bifurc. Chaos.

[14]  M. Forti,et al.  Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations , 2006 .

[15]  Lijuan Wang,et al.  Positive almost periodic solution for a class of Lasota-Wazewska model with multiple time-varying delays , 2011, Comput. Math. Appl..

[16]  Y. Takeuchi,et al.  Periodicity and global dynamics of an impulsive delay Lasota–Wazewska model , 2007 .

[17]  Gian Italo Bischi,et al.  Sliding and oscillations in fisheries with on-off harvesting and different switching times , 2014, Commun. Nonlinear Sci. Numer. Simul..

[18]  M. I. D. S. Costa,et al.  Dynamical stabilization of grazing systems: An interplay among plant-water interaction, overgrazing and a threshold management policy. , 2006, Mathematical biosciences.

[19]  Mei Yu,et al.  Periodic solution and almost periodic solution of impulsive Lasota-Wazewska model with multiple time-varying delays , 2012, Comput. Math. Appl..