The Dynamic Parallel Complexity of Computational Circuits

We establish connections between parallel circuit evaluation and uniform algebraic closure properties of unary function classes. We use this connection in the development of time-efficient and processor-efficient parallel algorithms for the evaluation of algebraic circuits. Our algorithm provides a nontrivial upper bound on the parallel complexity of the circuit value problem over $\{{\Bbb R},\min,\max,+\}$ and $\{{\Bbb R}^{+},\min,\max,\times\}$. We partially answer an open question of Miller, Ramachandran, and Kaltofen by showing that circuits over a polynomial-bounded noncommutative semiring and circuits over infinite noncommutative semirings with a polynomial-bounded dimension over a commutative semiring can be evaluated in polylogarithmic time in their size and degree using a polynomial number of processors. We also present an improved parallel algorithm for Boolean circuits.

[1]  Walter L. Ruzzo On Uniform Circuit Complexity , 1981, J. Comput. Syst. Sci..

[2]  S. Teng,et al.  Optimal Tree Contraction in the EREW Model , 1988 .

[3]  Shang-Hua Teng The construction of Huffman-equivalent prefix code in NC , 1987, SIGA.

[4]  Noam Nisan,et al.  Lower bounds for non-commutative computation , 1991, STOC '91.

[5]  Vijaya Ramachandran,et al.  An efficient parallel algorithm for the general planar monotone circuit value problem4 , 1994, SODA '94.

[6]  S. Rao Kosaraju,et al.  On Parallel Evaluation of Classes of Circuits , 1990, FSTTCS.

[7]  E. Szemerédi,et al.  Sorting inc logn parallel steps , 1983 .

[8]  Walter L. Ruzzo,et al.  Tree-size bounded alternation(Extended Abstract) , 1979, J. Comput. Syst. Sci..

[9]  Gary L. Miller,et al.  Dynamic parallel complexity of computational circuits , 1987, STOC '87.

[10]  Leslie G. Valiant,et al.  Fast Parallel Computation of Polynomials Using Few Processors , 1983, SIAM J. Comput..

[11]  Jeffrey D. Ullman,et al.  Parallel complexity of logical query programs , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[12]  Leslie G. Valiant,et al.  A logarithmic time sort for linear size networks , 1982, STOC.

[13]  L. Goldschlager The monotone and planar circuit value problems are log space complete for P , 1977, SIGA.

[14]  Gary L. Miller,et al.  Tree-Based Parallel Algorithm Design , 1997, Algorithmica.

[15]  R. Ladner The circuit value problem is log space complete for P , 1975, SIGA.

[16]  Gary L. Miller,et al.  Efficient Parallel Evaluation of Straight-Line Code and Arithmetic Circuits , 1988, SIAM J. Comput..

[17]  Gary L. Miller,et al.  Parallel tree contraction and its application , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).