Autour de la réservation de bande passante dans les réseaux ad hoc

Les reseaux sans fil connaissent aujourd'hui un essor important. Le nombre croissant d'offres commerciales basees sur la norme IEEE 802.11 (Wi-Fi) et ses declinaisons en atteste. Ces reseaux necessitent actuellement la presence d'une station de base pour assurer les communications entre mobiles. Les reseaux ad hoc sont des reseaux sans fil spontanes, mobiles et totalement autonome. Les mobiles communiquent directement entre eux, relayant les communications des autres mobiles lorsque les correspondants sont hors de portee radio. Il est des lors possible de creer un reseau par la simple presence de terminaux equipes de cartes d'interfaces adequates. Ces reseaux mobiles et dynamiques peuvent etre utilises pour etendre la portee de stations de base, offrant ainsi un acces a l'Internet sur une zone geographique etendue a moindre cout. Ils peuvent etre deployes rapidement et etre utilises par exemple dans des situations d'urgence. Les caracteristiques particulieres du medium radio, telle que la portee de communication limitee ou le mode de partage du canal radio ainsi que la mobilite des terminaux rendent souvent les mecanismes et protocoles issus du monde filaire peu performants. A l'heure actuelle, de nombreux travaux ont ete effectues afin de concevoir des protocoles de routage adaptes a ces reseaux. Le groupe de travail MANET de l'IETF est en passe de standardiser une ou plusieurs solutions de routage. De nombreuses problematiques restent cependant ouvertes telles que la securite, le multicast ou encore la qualite de service. Ces differents sujets ont fait couler beaucoup d'encre durant ces dernieres annees. Toutes les solutions issues du monde filaire ont ete re-examinees et adaptees mais peu de propositions reellement adaptees aux specificites de ces reseaux ont vu le jour. Le travail effectue durant ma these se situe autour de la problematique de la reservation de bande passante dans les reseaux ad hoc. Ce travail a debute par la proposition d'un protocole de reservation de bande passante prenant en compte les interferences pouvant survenir entre emetteurs hors de portee de communication. En effet, deux mobiles ne pouvant communiquer directement peuvent avoir a se partager la bande passante du canal radio. Mettre en oeuvre un protocole de reservation de bande passante necessite d'apporter suffisamment d'informations aux routeurs en charge d'accepter ou de refuser les requetes formulees par les applications afin de leur permettre d'effectuer un controle d'admission realiste. Ce travail nous a conduit a nous interesser a l'etude du protocole d'acces au medium de la norme IEEE 802.11 afin d'evaluer sa capacite. L'integralite des etudes theoriques des performances de ce protocole concernaient jusqu'a present des reseaux dans lesquels tous les mobiles sont a portee de communication les uns des autres. Or, dans certaines situations, la presence de communications distantes a un impact tres marque sur les performances et sur l'equite de ce protocole d'acces au medium. Nous avons modelise plusieurs scenarios presentant une forte inegalite dans l'acces au medium, phenomene pouvant avoir un impact important sur l'estimation des ressources disponibles. Le protocole d'acces au medium n'etant pas equitable dans un contexte multi-sauts, nous avons propose un algorithme distribue d'allocation de bande passante dans de tels reseaux permettant de preserver une certaine equite tout en conservant une utilisation globale du reseau correcte. Dans de tels reseaux, il y a en effet souvent opposition entre performance globale et partage equitable des ressources. La solution que nous proposons permet dans un contexte statique ainsi que dans un contexte mobile de realiser un compromis entre ces deux objectifs antinomiques, et ce de facon totalement distribuee. Enfin, dans le cadre de reseaux hybrides composes d'un reseau d'acces sans fil offrant un acces a l'Internet a un reseau ad hoc sous-jacent, nous avons etudie l'impact du trafic de controle sur les performances du reseau. Cette problematique necessite souvent de faire un compromis entre transmission rapide et fiable des informations de gestion du reseau telles que la localisation des differents mobiles permettant de construire l'arbre de routage et utilisation du reseau. En effet, une transmission frequente d'informations de controle permet d'aboutir a une vision precise du reseau mais a un cout important. Nous avons montre, par simulation, que le gain obtenu par la precision de la vision du reseau apportee a chaque routeur etait rapidement compense par l'occupation des ressources engendree a cette fin. Concevoir une solution de qualite de service pour de tels reseaux n'est pas une problematique simple et beaucoup reste a faire. L'importance d'une evaluation precise de la capacite du medium a ete demontree mais ce processus reste couteux a mettre en oeuvre et il est impossible de prevoir toutes les situations pouvant survenir dans des reseaux radio mobiles. Les protocoles de qualite de service devront donc s'efforcer d'evaluer au mieux l'etat du reseau afin de ne pas sur ou sous-evaluer sa capacite mais devront aussi etre adaptatif afin de reagir rapidement et efficacement a la versatilite de ces reseaux.

[1]  Fred Baker,et al.  Assured Forwarding PHB Group , 1999, RFC.

[2]  Van Jacobson,et al.  An Expedited Forwarding PHB , 1999, RFC.

[3]  Kai Chen,et al.  Available Bandwidth Estimation in IEEE 802.11-based Wireless Networks , 2003 .

[4]  Joseph P. Macker,et al.  Mobile Ad hoc Networking (MANET): Routing Protocol Performance Issues and Evaluation Considerations , 1999, RFC.

[5]  Éva Tardos,et al.  Fast approximation algorithms for fractional packing and covering problems , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[6]  Michael G. Barry,et al.  Distributed control algorithms for service differentiation in wireless packet networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[7]  Sukumar Nandi,et al.  Improving MAC Performance in Wireless Ad Hoc Networks Using Enhanced Carrier Sensing (ECS) , 2004, NETWORKING.

[8]  Ram Ramanathan,et al.  Hierarchically‐organized, multihop mobile wireless networks for quality‐of‐service support , 1998, Mob. Networks Appl..

[9]  Brahim Bensaou,et al.  On max-min fairness and scheduling in wireless ad-hoc networks: analytical framework and implementation , 2001, MobiHoc '01.

[10]  Guillaume Chelius,et al.  Design of a Hybrid Routing Architecture , 2003, MWCN.

[11]  Claude Castelluccia,et al.  Differentiation mechanisms for IEEE 802.11 , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[12]  L. Kleinrock,et al.  Packet Switching in Radio Channels : Part Il-The Hidden Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone Solution , 2022 .

[13]  András Gergely Valkó,et al.  Cellular IP: a new approach to Internet host mobility , 1999, CCRV.

[14]  Jangeun Jun,et al.  The nominal capacity of wireless mesh networks , 2003, IEEE Wirel. Commun..

[15]  Brahim Bensaou,et al.  Performance evaluation of a fair backoff algorithm for IEEE 802.11 DFWMAC , 2002, MobiHoc '02.

[16]  Nitin H. Vaidya,et al.  Priority Scheduling in Wireless Ad Hoc Networks , 2002, MobiHoc '02.

[17]  Danny Raz,et al.  Global optimization using local information with applications to flow control , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[18]  K. Bertet,et al.  Un premier pas vers la réservation de bande passante dans les réseaux radio , 2000 .

[19]  Ramjee Prasad,et al.  Evaluation of mobile ad-hoc network techniques in a cellular network , 2000, Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152).

[20]  Zheng Wang,et al.  An Architecture for Differentiated Services , 1998, RFC.

[21]  Guy Pujolle,et al.  A link-state QoS routing protocol for ad hoc networks , 2002, 4th International Workshop on Mobile and Wireless Communications Network.

[22]  Andreas Almquist,et al.  Evaluation of quality of service schemes for IEEE 802.11 wireless LANs , 2001, Proceedings LCN 2001. 26th Annual IEEE Conference on Local Computer Networks.

[23]  Charles E. Perkins,et al.  IP Mobility Support , 1996, RFC.

[24]  Reinhard German,et al.  Performance modeling of IEEE 802.11 wireless LANs with stochastic Petri nets , 2001, Perform. Evaluation.

[25]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[26]  Q. Ni AEDCF: Enhanced Service Differentiation for IEEE 802.11 Wireless Ad-Hoc Networks , 2002 .

[27]  Andrew T. Campbell,et al.  Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad Hoc Networks (SWAN) , 2002, IEEE Trans. Mob. Comput..

[28]  Thomas F. La Porta,et al.  HAWAII: a domain-based approach for supporting mobility in wide-area wireless networks , 2002, Proceedings. Seventh International Conference on Network Protocols.

[29]  Aura Ganz,et al.  Ad hoc QoS on-demand routing (AQOR) in mobile ad hoc networks , 2003, J. Parallel Distributed Comput..

[30]  Stephen J. Wright,et al.  Object-oriented software for quadratic programming , 2003, TOMS.

[31]  Vladimir M. Vishnevsky,et al.  1 LANs: Saturation Throughput in the Presence of Noise , 2002, NETWORKING.

[32]  Robert Metcalfe,et al.  Ethernet: distributed packet switching for local computer networks , 1988, CACM.

[33]  S. Nandi,et al.  QoS support in mobile ad hoc networks , 2006, 2006 IFIP International Conference on Wireless and Optical Communications Networks.

[34]  Sanjay Gupta,et al.  Performance modeling of asynchronous data transfer methods of IEEE 802.11 MAC protocol , 1997, Wirel. Networks.

[35]  Vaduvur Bharghavan,et al.  Achieving MAC layer fairness in wireless packet networks , 2000, MobiCom '00.

[36]  Kee Chaing Chua,et al.  A flexible quality of service model for mobile ad-hoc networks , 2000, VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No.00CH37026).

[37]  Vladimir M. Vishnevsky,et al.  IEEE 802.11 Wireless LAN: Saturation Throughput Analysis with Seizing Effect Consideration , 2002, Cluster Computing.

[38]  Torsten Braun,et al.  BLR: beacon-less routing algorithm for mobile ad hoc networks , 2004, Comput. Commun..

[39]  C. R. Lin On-demand QoS routing in multihop mobile networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[40]  Zygmunt J. Haas,et al.  The zone routing protocol (zrp) for ad hoc networks" intemet draft , 2002 .

[41]  David L. Black,et al.  Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers , 1998, RFC.

[42]  P. Karn,et al.  MACA-a New Channel Access Method for Packet Radio , 1990 .

[43]  Klara Nahrstedt,et al.  Distributed quality-of-service routing in ad hoc networks , 1999, IEEE J. Sel. Areas Commun..

[44]  Norman M. Abramson,et al.  THE ALOHA SYSTEM: another alternative for computer communications , 1899, AFIPS '70 (Fall).

[45]  Chieh-Yih Wan,et al.  Comparison of IP micromobility protocols , 2002, IEEE Wirel. Commun..

[46]  Yu-Chee Tseng,et al.  A Multi-Path QoS Routing Protocol in a Wireless Mobile Ad Hoc Network , 2000, Telecommun. Syst..

[47]  Ruay-Shiung Chang,et al.  A Priority Scheme for IEEE 802. 11 DCF Access Method , 1999 .

[48]  Jain-Shing Liu,et al.  QoS routing in ad hoc wireless networks , 1999, IEEE J. Sel. Areas Commun..

[49]  Robert Tappan Morris,et al.  Capacity of Ad Hoc wireless networks , 2001, MobiCom '01.

[50]  John Wroclawski,et al.  Specification of the Controlled-Load Network Element Service , 1997, RFC.

[51]  Bernard Mans,et al.  Bandwidth reservation in multihop wireless networks: complexity and mechanisms , 2004, 24th International Conference on Distributed Computing Systems Workshops, 2004. Proceedings..

[52]  Yakov Rekhter,et al.  A Border Gateway Protocol 4 (BGP-4) , 1994, RFC.

[53]  A. Girotra,et al.  Performance Analysis of the IEEE 802 . 11 Distributed Coordination Function , 2005 .

[54]  Tracy Camp,et al.  A survey of mobility models for ad hoc network research , 2002, Wirel. Commun. Mob. Comput..

[55]  Mário Serafim Nunes,et al.  Performance evaluation of IEEE 802.11e , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[56]  Kee Chaing Chua,et al.  A Capacity Analysis for the IEEE 802.11 MAC Protocol , 2001, Wirel. Networks.

[57]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[58]  Lixia Zhang,et al.  Resource ReSerVation Protocol (RSVP) - Version 1 Functional Specification , 1997, RFC.

[59]  L. Kleinrock,et al.  Packet Switching in Radio Channels: Part I - Carrier Sense Multiple-Access Modes and Their Throughput-Delay Characteristics , 1975, IEEE Transactions on Communications.

[60]  Khaldoun Al Agha,et al.  Integrating fast mobility in the OLSR routing protocol , 2002, 4th International Workshop on Mobile and Wireless Communications Network.

[61]  S.A. Gronemeyer,et al.  Advances in packet radio technology , 1978, Proceedings of the IEEE.

[62]  Chenxi Zhu,et al.  QoS routing for mobile ad hoc networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[63]  Piotr Berman,et al.  On the Complexity of Approximating the Independent Set Problem , 1989, STACS.

[64]  Claude Castelluccia,et al.  EnhancingIEEE 802.11 performance in congested environments , 2003, Ann. des Télécommunications.

[65]  Charles E. Perkins,et al.  Route Optimization for Mobile IP , 1998, Cluster Computing.

[66]  Mario Gerla,et al.  End-to-end versus explicit feedback measurement in 802.11 networks , 2002, Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications.

[67]  Scott Shenker,et al.  Integrated Services in the Internet Architecture : an Overview Status of this Memo , 1994 .

[68]  Eric Hsiao-Kuang Wu,et al.  Dynamic Adaptive Routing for a Heterogeneous Wireless Network , 2004, Mob. Networks Appl..

[69]  Marco Conti,et al.  IEEE 802.11 wireless LAN: capacity analysis and protocol enhancement , 1998, Proceedings. IEEE INFOCOM '98, the Conference on Computer Communications. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Gateway to the 21st Century (Cat. No.98.

[70]  Anders Lindgren,et al.  Quality of Service Schemes for IEEE 802.11: A Simulation Study , 2001, IWQoS.

[71]  Andrew T. Campbell,et al.  INSIGNIA: An IP-Based Quality of Service Framework for Mobile ad Hoc Networks , 2000, J. Parallel Distributed Comput..

[72]  Vaduvur Bharghavan,et al.  MACAW: a media access protocol for wireless LAN's , 1994, SIGCOMM 1994.

[73]  Claude Castelluccia,et al.  Priorities in WLANs , 2003, Comput. Networks.

[74]  Vaduvur Bharghavan,et al.  CEDAR: a core-extraction distributed ad hoc routing algorithm , 1999, IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320).

[75]  Philippe Jacquet,et al.  Optimized Link State Routing Protocol (OLSR) , 2003, RFC.

[76]  Fair medium access in 802.11 based wireless ad-hoc networks , 2000, MobiHoc.

[77]  Andrew T. Campbell,et al.  Improving UDP and TCP performance in mobile ad hoc networks with INSIGNIA , 2001, IEEE Commun. Mag..

[78]  A. S. Krishnakumar,et al.  Real-time traffic over the IEEE 802.11 medium access control layer , 1996, Bell Labs Technical Journal.

[79]  Patrick Amestoy,et al.  MUMPS : A General Purpose Distributed Memory Sparse Solver , 2000, PARA.

[80]  Sunghyun Choi,et al.  IEEE 802.11e Wireless LAN for Quality of Service , 2001 .

[81]  Laurent Viennot,et al.  Impact of interferences on bandwidth reservation for ad hoc networks: a first theoretical study , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[82]  Paramvir Bahl,et al.  Distributed fair scheduling in a wireless LAN , 2000, IEEE Transactions on Mobile Computing.

[83]  Robert Simon,et al.  A bandwidth-reservation mechanism for on-demand ad hoc path finding , 2002, Proceedings 35th Annual Simulation Symposium. SS 2002.

[84]  Anders Lindgren,et al.  Quality of Service Schemes for IEEE 802.11 Wireless LANs – An Evaluation , 2003, Mob. Networks Appl..

[85]  Sukumar Nandi,et al.  Modeling the short-term unfairness of IEEE 802.11 in presence of hidden terminals , 2004, Perform. Evaluation.

[86]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[87]  Martin Heusse,et al.  Performance anomaly of 802.11b , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[88]  Brahim Bensaou,et al.  Achieving fairness in IEEE 802.11 DFWMAC with variable packet lengths , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[89]  John Moy,et al.  OSPF Version 2 , 1998, RFC.

[90]  J. Broach,et al.  The dynamic source routing protocol for mobile ad-hoc networks , 1998 .

[91]  Fred L. Templin,et al.  Topology Dissemination Based on Reverse-Path Forwarding (TBRPF) , 2004, RFC.

[92]  Piotr Berman,et al.  On the Complexity of Approximating the Independent Set Problem , 1989, Inf. Comput..

[93]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  Laurent Massoulié,et al.  Impact of fairness on Internet performance , 2001, SIGMETRICS '01.

[95]  John Moy,et al.  OSPF specification , 1989, Request for Comments.

[96]  Charles E. Perkins,et al.  Ad hoc On-Demand Distance Vector (AODV) Routing , 2001, RFC.

[97]  G. Dantzig Programming of Interdependent Activities: II Mathematical Model , 1949 .

[98]  Fouad A. Tobagi,et al.  Random access techniques for data transmission over packet-switched radio channels , 1975, AFIPS '75.

[99]  Scott Shenker,et al.  Specification of Guaranteed Quality of Service , 1997, RFC.

[100]  RAFFAELE BRUNO,et al.  Bluetooth: Architecture, Protocols and Scheduling Algorithms , 2004, Cluster Computing.

[101]  J. Jubin,et al.  The DARPA packet radio network protocols , 1987, Proceedings of the IEEE.

[102]  Ru-Sheng Liu,et al.  On-demand QoS-based routing protocol for ad hoc mobile wireless networks , 2000, Proceedings ISCC 2000. Fifth IEEE Symposium on Computers and Communications.

[103]  Louise E. Moser,et al.  An analysis of the optimum node density for ad hoc mobile networks , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[104]  L. E. Miller,et al.  Implementing message priority policies over an 802.11 based mobile ad hoc network , 2001, 2001 MILCOM Proceedings Communications for Network-Centric Operations: Creating the Information Force (Cat. No.01CH37277).

[105]  Isabelle Guérin Lassous,et al.  Experiments with 802.11b in ad hoc configurations , 2003, 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003..

[106]  Dominique Dhoutaut,et al.  Impact of Heavy Traffic Beyond Communication Range in Multi-Hops Ad-Hoc Networks , 2001 .

[107]  Niki Pissinou,et al.  On quality of service routing in ad-hoc networks , 2003, 28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN '03. Proceedings..

[108]  Thierry Turletti,et al.  Modeling and analysis of slow CW decrease IEEE 802.11 WLAN , 2003, 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003..

[109]  Piyush Gupta,et al.  An Experimental Scaling Law for Ad Hoc Networks , 2001 .

[110]  Lawrence G. Roberts,et al.  ALOHA packet system with and without slots and capture , 1975, CCRV.

[111]  Hao Zhu,et al.  EDCF-DM: a novel enhanced distributed coordination function for wireless ad hoc networks , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).