Self-assembly of small-molecule fumaramides allows transmembrane chloride channel formation.

This study reports the formation of self-assembled transmembrane anion channels by small-molecule fumaramides. Such artificial ion channel formation was confirmed by ion transport across liposomes and by planar bilayer conductance measurements. The geometry-optimized model of the channel and Cl- ion selectivity within the channel lumen was also illustrated.

[1]  S. Matile,et al.  Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Motif to Run Reactions on Aromatic Surfaces. , 2016, Angewandte Chemie.

[2]  Francesco Zerbetto,et al.  The effect of mechanical interlocking on crystal packing: predictions and testing. , 2002, Journal of the American Chemical Society.

[3]  Euan R. Kay,et al.  A Reversible Synthetic Rotary Molecular Motor , 2004, Science.

[4]  T. James,et al.  Activities and modes of action of artificial ion channel mimics , 1993 .

[5]  S. Hussain,et al.  Preorganized bis-thioureas as powerful anion carriers: chloride transport by single molecules in large unilamellar vesicles. , 2014, Journal of the American Chemical Society.

[6]  Francesco Zerbetto,et al.  A generic basis for some simple light-operated mechanical molecular machines. , 2004, Journal of the American Chemical Society.

[7]  T. Jentsch,et al.  Ion channels: Function unravelled by dysfunction , 2004, Nature Cell Biology.

[8]  B. Thimme Gowda,et al.  N,N′-Diphenylbut-2-enediamide , 2010, Acta crystallographica. Section E, Structure reports online.

[9]  I. Izzo,et al.  Calix[4]arene-cholic acid conjugates: a new class of efficient synthetic ionophores. , 2005, Chemical communications.

[10]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[11]  N. Madhavan,et al.  A highly active anion-selective aminocyclodextrin ion channel. , 2005, Angewandte Chemie.

[12]  A. Jenkins,et al.  The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes. , 2007, Bioelectrochemistry.

[13]  Yanke Che,et al.  Preorganized aryltriazole foldamers as effective transmembrane transporters for chloride anion. , 2014, Organic letters.

[14]  Sun Min Kim,et al.  Synthetic anion transporters that bear a terminal ethynyl group. , 2015, Chemical communications.

[15]  E. Wiechec,et al.  Role of ion channels in regulating Ca2+ homeostasis during the interplay between immune and cancer cells , 2015, Cell Death and Disease.

[16]  A. Frontera,et al.  Putting anion-π interactions into perspective. , 2011, Angewandte Chemie.

[17]  M. Crisma,et al.  Helical Foldamers Incorporating Photoswitchable Residues for Light-Mediated Modulation of Conformational Preference. , 2016, Journal of the American Chemical Society.

[18]  Muhammad Raza Shah,et al.  Synthetic ion channels and pores (2004-2005). , 2006, Chemical Society reviews.

[19]  Y. Kobuke,et al.  An Artificial Ion Channel Formed by a Macrocyclic Resorcin[4]arene with Amphiphilic Cholic Acid Ether Groups. , 2001, Angewandte Chemie.

[20]  S. Matile,et al.  Ditopic ion transport systems: anion-π interactions and halogen bonds at work. , 2011, Angewandte Chemie.

[21]  Jonathan K. W. Chui,et al.  Apparent fractal distribution of open durations in cyclodextrin-based ion channels. , 2010, Chemical communications.

[22]  A. Beatty,et al.  Solution and solid-state models of peptide CH...O hydrogen bonds. , 2002, Journal of the American Chemical Society.

[23]  J. Makarević,et al.  Bis(PheOH) maleic acid amide-fumaric acid amide photoizomerization induces microsphere-to-gel fiber morphological transition: the photoinduced gelation system. , 2002, Journal of the American Chemical Society.

[24]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[25]  David A Leigh,et al.  Shuttling through reversible covalent chemistry. , 2004, Chemical communications.

[26]  A. P. Davis,et al.  Biotin[6]uril Esters: Chloride-Selective Transmembrane Anion Carriers Employing C-H···Anion Interactions. , 2015, Journal of the American Chemical Society.

[27]  B. Thimme Gowda,et al.  4-Chloro-N-(2,3-dimethylphenyl)benzenesulfonamide , 2011, Acta crystallographica. Section E, Structure reports online.

[28]  Zelda R. Wasserman,et al.  Synthetic peptides as models for ion channel proteins , 1993 .

[29]  Zhan-Ting Li,et al.  Voltage-driven reversible insertion into and leaving from a lipid bilayer: tuning transmembrane transport of artificial channels. , 2014, Angewandte Chemie.

[30]  A. P. Davis,et al.  A flexible solution to anion transport: powerful anionophores based on a cyclohexane scaffold. , 2014, Angewandte Chemie.

[31]  Philip A. Gale,et al.  Anion transporters and biological systems. , 2013, Accounts of chemical research.

[32]  Juan R. Granja,et al.  Self-assembling organic nanotubes based on a cyclic peptide architecture , 1993, Nature.

[33]  Euan R Kay,et al.  Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. , 2006, Journal of the American Chemical Society.

[34]  Pinaki Talukdar,et al.  Cyclo-oligo-(1 → 6)-β-D-glucosamine based artificial channels for tunable transmembrane ion transport. , 2014, Chemical communications.

[35]  R. Benz,et al.  The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). , 1983, Biophysical journal.

[36]  Jonathan K. W. Chui,et al.  Ionic conductance of synthetic channels: analysis, lessons, and recommendations. , 2012, Chemical Society reviews.

[37]  B. Shen,et al.  A Small synthetic molecule forms chloride channels to mediate chloride transport across cell membranes. , 2007, Journal of the American Chemical Society.

[38]  T. Fyles,et al.  Synthetic ion channels in bilayer membranes. , 2007, Chemical Society reviews.

[39]  David A Leigh,et al.  Chiroptical switching in a bistable molecular shuttle. , 2003, Journal of the American Chemical Society.

[40]  Kyu‐Sung Jeong,et al.  Chloride transport activities of trans- and cis-amide-linked bisureas. , 2015, Chemical communications.

[41]  S. Matile,et al.  Transmembrane anion transport mediated by halogen-bond donors , 2012, Nature Communications.

[42]  Stefan Matile,et al.  Recent synthetic transport systems. , 2011, Chemical Society reviews.

[43]  K. C. Brennan,et al.  Toward biomimetic ion channels formed by rigid-rod molecules: Length-dependent ion-transport activity of substituted oligo(p-phenylene)s , 1997 .

[44]  A. Mukherjee,et al.  Hopping-mediated anion transport through a mannitol-based rosette ion channel. , 2014, Journal of the American Chemical Society.

[45]  S. Nepogodiev,et al.  Stiff, and sticky in the right places: the dramatic influence of preorganizing guest binding sites on the hydrogen bond-directed assembly of rotaxanes. , 2001, Journal of the American Chemical Society.

[46]  Francesco Zerbetto,et al.  Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles. , 2003, Angewandte Chemie.

[47]  S. Matile,et al.  Rigid-rod anion-pi slides for multiion hopping across lipid bilayers. , 2007, Organic & biomolecular chemistry.

[48]  I. Izzo,et al.  Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity. , 2013, Accounts of chemical research.

[49]  M. Tanokura,et al.  Structure and Polymannuronate Specificity of a Eukaryotic Member of Polysaccharide Lyase Family 14* , 2016, The Journal of Biological Chemistry.

[50]  Martin Korth,et al.  Third-Generation Hydrogen-Bonding Corrections for Semiempirical QM Methods and Force Fields , 2010 .

[51]  Pinaki Talukdar,et al.  Trimodal Control of Ion-Transport Activity on Cyclo-oligo-(1→6)-β-D-glucosamine-Based Artificial Ion-Transport Systems. , 2015, Chemistry.

[52]  J. Berná,et al.  Light-responsive peptide [2]rotaxanes as gatekeepers of mechanised nanocontainers. , 2015, Chemical communications.

[53]  M. Barboiu,et al.  Highly Selective Artificial K(+) Channels: An Example of Selectivity-Induced Transmembrane Potential. , 2016, Journal of the American Chemical Society.

[54]  Zhan-Ting Li,et al.  Chiral selective transmembrane transport of amino acids through artificial channels. , 2013, Journal of the American Chemical Society.

[55]  G. Gokel,et al.  Membrane-length amphiphiles exhibiting structural simplicity and ion channel activity. , 2009, Chemistry.