Reentrant behavior of the spinodal curve in a nonequilibrium ferromagnet.

The metastable behavior of a kinetic Ising-type ferromagnetic model system in which a generic type of microscopic disorder induces nonequilibrium steady states is studied by computer simulation and a mean-field approach. We pay attention, in particular, to the spinodal curve or intrinsic coercive field that separates the metastable region from the unstable one. We find that, under strong nonequilibrium conditions, this exhibits reentrant behavior as a function of temperature. That is, metastability does not happen in this regime for both low and high temperatures, but instead emerges for intermediate temperature, as a consequence of the nonlinear interplay between thermal and nonequilibrium fluctuations. We argue that this behavior, which is in contrast with equilibrium phenomenology and could occur in actual impure specimens, might be related to the presence of an effective multiplicative noise in the system.

[1]  L. Elsgolts Differential Equations and the Calculus of Variations , 2003 .

[2]  C. Rudowicz,et al.  Textbook treatments of the hysteresis loop for ferromagnets—Survey of misconceptions and misinterpretations , 2003 .

[3]  A. Faisst,et al.  Magnetic phase diagram of CsCuCl 3 for in-plane magnetic fields up to 14 T , 2001 .

[4]  N. Berglund,et al.  Metastability in simple climate models: Pathwise analysis of slowly driven Langevin equations , 2001, physics/0111110.

[5]  J. M. Sancho,et al.  Noise-Induced Scenario for Inverted Phase Diagrams , 2001 .

[6]  G. Ridolfi,et al.  On the metastability of the standard model vacuum , 2001, hep-ph/0104016.

[7]  H. Stanley,et al.  Generic mechanism for generating a liquid–liquid phase transition , 2001, Nature.

[8]  E. Jagla Low-temperature behavior of core-softened models: water and silica behavior. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  L. Cugliandolo,et al.  Glassy systems under time-dependent driving forces: application to slow granular rheology. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  S. Banik,et al.  Antikaon condensation and the metastability of protoneutron stars , 2000, astro-ph/0009113.

[11]  S. Haas,et al.  Paramagnetic reentrance effect in NS proximity cylinders , 2000, cond-mat/0003413.

[12]  Mangioni,et al.  Nonequilibrium phase transitions induced by multiplicative noise: effects of self-correlation , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  R. Dickman,et al.  Nonequilibrium Phase Transitions in Lattice Models , 1999 .

[14]  R. Sear Phase behavior of a simple model of globular proteins , 1999, cond-mat/9904426.

[15]  A. Strumia,et al.  Bubble nucleation rates for cosmological phase transitions , 1999, hep-ph/9904357.

[16]  W. Greiner,et al.  Homogeneous nucleation of quark-gluon plasma, finite size effects and long-lived metastable objects , 1998, hep-ph/9812292.

[17]  M. Novotny,et al.  Test of the Kolmogorov-Johnson-Mehl-Avrami picture of metastable decay in a model with microscopic dynamics , 1998, cond-mat/9811079.

[18]  Joaquín J. Torres,et al.  MODELING IONIC DIFFUSION IN MAGNETIC SYSTEMS , 1998 .

[19]  M. A. Muñoz,et al.  Mesoscopic description of the annealed Ising model, and multiplicative noise , 1998, cond-mat/9807157.

[20]  J. Marro,et al.  Demagnetization of spin systems at low temperature , 1997 .

[21]  J. Lebowitz,et al.  Metastability in the Two-Dimensional Ising Model with Free Boundary Conditions , 1997, cond-mat/9705311.

[22]  Raúl Toral,et al.  Nonequilibrium phase transitions induced by multiplicative noise , 1997 .

[23]  Muñoz,et al.  Simple nonequilibrium extension of the Ising model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  M. Kolesik,et al.  Magnetization switching in nanoscale ferromagnetic grains: Simulations with heterogeneous nucleation , 1996, cond-mat/9609056.

[25]  F. Alexander,et al.  Two-Temperature Non-Equilibrium Ising Models , 1996 .

[26]  Richards,et al.  Analytical and computational study of magnetization switching in kinetic Ising systems with demagnetizing fields. , 1995, Physical review. B, Condensed matter.

[27]  Van den Broeck C,et al.  Noise-induced nonequilibrium phase transition. , 1994, Physical review letters.

[28]  Garrido,et al.  Nonequilibrium lattice models: A case with effective Hamiltonian in d dimensions. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  R. Bryan Solids far from equilibrium edited by C. Godrèche , 1993 .

[30]  Roberto H. Schonmann,et al.  The pattern of escape from metastability of a stochastic ising model , 1992 .

[31]  Garrido,et al.  Effective Hamiltonian description of nonequilibrium spin systems. , 1989, Physical review letters.

[32]  R. Dickman Kinetic phase transitions and tricritical point in an Ising model with competing dynamics , 1987 .

[33]  James D. Gunton,et al.  Introduction to the Theory of Metastable and Unstable States , 1983 .

[34]  D. Beeman,et al.  Thermodynamics of an Ising model with random exchange interactions , 1976 .

[35]  R. Kikuchi A Theory of Cooperative Phenomena , 1951 .

[36]  Karl Johan Åström,et al.  Modeling of Complex Systems , 2003 .

[37]  E. I. Meletis,et al.  State Memory and Reentrance in a Paramagnetically Limited Superconductor , 1999 .

[38]  David P. Landau,et al.  Computer Simulation Studies in Condensed-Matter Physics X , 1998 .

[39]  Dietrich Stauffer,et al.  Anual Reviews of Computational Physics VII , 1994 .

[40]  David P. Landau,et al.  Computer Simulation Studies in Condensed Matter Physics , 1988 .

[41]  M. Kalos,et al.  Computer experiments on phase separation in binary alloys , 1979 .