Three Methods for Revising Hybrid Knowledge Bases

Contemporary approaches for the Semantic Web include hybrid knowledge bases that combine ontologies with rule-based languages. Despite a number of existing combination approaches, little attention has been given to change mechanisms for hybrid knowledge bases that can appropriately handle the dynamics of information on the Web. We present here three methods for revising hybrid knowledge bases in light of new information. We show by means of representation theorems that two of them fit properly into the classic belief change framework and that each of the two generalises the third method.

[1]  Stefan Woltran,et al.  A Model-Theoretic Approach to Belief Change in Answer Set Programming , 2013, TOCL.

[2]  André Fuhrmann,et al.  Theory contraction through base contraction , 1991, J. Philos. Log..

[3]  Jos de Bruijn,et al.  A semantical framework for hybrid knowledge bases , 2010, Knowledge and Information Systems.

[4]  Bernhard Nebel,et al.  Belief Revision and Default Reasoning: Syntax-Based Approaches , 1991, KR.

[5]  Steffen Staab,et al.  What Is an Ontology? , 2009, Handbook on Ontologies.

[6]  Francesca A. Lisi,et al.  Learning Onto-Relational Rules with Inductive Logic Programming , 2012, ArXiv.

[7]  Pascal Hitzler,et al.  Ontologies and Rules , 2009, Handbook on Ontologies.

[8]  SVEN OVE HANSSON,et al.  Reversing the Levi identity , 1993, J. Philos. Log..

[9]  Sven Ove Hansson,et al.  New operators for theory change , 2008 .

[10]  Guilin Qi,et al.  DL-Lite Contraction and Revision , 2016, J. Artif. Intell. Res..

[11]  Kewen Wang,et al.  Partial Meet Revision and Contraction in Logic Programs , 2015, AAAI.

[12]  Pascal Hitzler,et al.  OWL and Rules , 2011, Reasoning Web.

[13]  João Leite,et al.  On updates of hybrid knowledge bases composed of ontologies and rules , 2015, Artif. Intell..

[14]  Renata Wassermann,et al.  On AGM for Non-Classical Logics , 2011, J. Philos. Log..

[15]  Thomas Lukasiewicz,et al.  Hybrid Reasoning with Rules and Ontologies , 2009, REWERSE.

[16]  Kewen Wang,et al.  Belief Change in Nonmonotonic Multi-Context Systems , 2013, LPNMR.

[17]  David Pearce,et al.  Quantified Equilibrium Logic and Foundations for Answer Set Programs , 2008, ICLP.

[18]  Philippe Roussel,et al.  The birth of Prolog , 1993, HOPL-II.

[19]  Hans Rott,et al.  Modellings for Belief Change: Base Contraction, Multiple Contraction, and Epistemic Entrenchment , 1992, JELIA.

[20]  Ken Satoh Nonmonotonic Reasoning by Minimal Belief Revision , 1988, FGCS.

[21]  Robert A. Kowalski,et al.  Predicate Logic as Programming Language , 1974, IFIP Congress.

[22]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[23]  Mukesh Dalal,et al.  Investigations into a Theory of Knowledge Base Revision , 1988, AAAI.