Space-time turbo equalization in frequency-selective MIMO channels

A computationally efficient space-time turbo equalization algorithm is derived for frequency-selective multiple-input-multiple-output (MIMO) channels. The algorithm is an extension of the iterative equalization algorithm by Reynolds and Wang (see Signal Processing, vol.81, no.5, p.989-995, 2001) for frequency-selective fading channels and of iterative multiuser detection for code-division multiple-access (CDMA) systems by Wang and Poor (see IEEE Trans. Commun., vol.47, p.1046-1061, 1999). The proposed algorithm is implemented as a MIMO detector consisting of a soft-input-soft-output (SISO) linear MMSE detector followed by SISO channel decoders for the multiple users. The detector first forms a soft replica of each composite interfering signal using the log likelihood ratio (LLR), fed back from the SISO channel decoders, of the transmitted coded symbols and subtracts it from the received signal vector. Linear adaptive filtering then takes place to suppress the interference residuals: filter taps are adjusted based on the minimum mean square error (MMSE) criterion. The LLR is then calculated for adaptive filter output. This process is repeated in an iterative fashion to enhance signal-detection performance. This paper also discusses the performance sensitivity of the proposed algorithm to channel-estimation error. A channel-estimation scheme is introduced that works with the iterative MIMO equalization process to reduce estimation errors.