Multigrid-based fuzzy systems for time series prediction: CATS competition

[1]  Tao Xiong,et al.  A combined SVM and LDA approach for classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[2]  Héctor Pomares,et al.  TaSe, a Taylor series-based fuzzy system model that combines interpretability and accuracy , 2005, Fuzzy Sets Syst..

[3]  Amaury Lendasse,et al.  Direct and Recursive Prediction of Time Series Using Mutual Information Selection , 2005, IWANN.

[4]  Ming-Wei Chang,et al.  Load Forecasting Using Support Vector Machines: A Study on EUNITE Competition 2001 , 2004, IEEE Transactions on Power Systems.

[5]  Héctor Pomares,et al.  MultiGrid-Based Fuzzy Systems for Function Approximation , 2004, MICAI.

[6]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[7]  Héctor Pomares,et al.  Structure identification in complete rule-based fuzzy systems , 2002, IEEE Trans. Fuzzy Syst..

[8]  António Dourado,et al.  Structure and parameter learning of neuro-fuzzy systems: A methodology and a comparative study , 2001 .

[9]  Alex Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[10]  Héctor Pomares,et al.  A systematic approach to a self-generating fuzzy rule-table for function approximation , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[11]  William B. Levy,et al.  Entorhinal/dentate excitation of CA3: A critical variable in hippocampal models , 2000, Neurocomputing.

[12]  Héctor Pomares,et al.  Self-organized fuzzy system generation from training examples , 2000, IEEE Trans. Fuzzy Syst..

[13]  Johan A. K. Suykens,et al.  WINNING ENTRY OF THE K. U. LEUVEN TIME-SERIES PREDICTION COMPETITION , 1999 .

[14]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1991, Proceedings of the 1991 IEEE International Symposium on Intelligent Control.

[15]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[16]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[17]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[18]  Ioannis B. Theocharis,et al.  Locally recurrent neural networks for long-term wind speed and power prediction , 2006, Neurocomputing.

[19]  Ignacio Rojas,et al.  A New Clustering Technique for Function Approximation , 2005 .

[20]  Héctor Pomares,et al.  MultiGrid-Based Fuzzy Systems for Time Series: Forecasting: Overcoming the curse of dimensionality , 2004, ESANN.

[21]  J. Casillas Interpretability issues in fuzzy modeling , 2003 .

[22]  Héctor Pomares,et al.  Time series analysis using normalized PG-RBF network with regression weights , 2002, Neurocomputing.

[23]  Julio Ortega Lopera,et al.  A new clustering technique for function approximation , 2002, IEEE Trans. Neural Networks.

[24]  Ming-Wei Chang,et al.  EUNITE Network Competition: Electricity Load Forecasting , 2001 .

[25]  André de Korvin,et al.  Structure and parameter learning of neuro-fuzzy systems: A methodology and a comparative study , 2001, J. Intell. Fuzzy Syst..

[26]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[27]  F. Takens Detecting strange attractors in turbulence , 1981 .

[28]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .