Regional surface mass anomalies from GRACE KBR measurements: Application of L‐curve regularization anda priori hydrological knowledge

[1] We present a method of directly estimating surface mass anomalies at regional scales using satellite-to-satellite K-band Ranging (KBR) data from the Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission. Geopotential differences based primarily on KBR measurement are derived using a modified energy integral method with an improved method to calibrate accelerometer measurements. Surface mass anomalies are computed based on a downward continuation process, with optimal regularization parameters estimated using the L-curve criterion method. We derive the covariance functions in both space- and space-time domains and use them as light constraints in the regional gravity estimation process in the Amazon basin study region. The space-time covariance function has a time-correlation distance of 1.27 months, which is evident that observations between neighboring months are correlated and the correlation should be taken into account. However, most of the current GRACE solutions did not consider such temporal correlations. In our study, the artifact in the regional gravity solution is mitigated by using the covariance functions. The averaged commission errors are estimated to be only 6.86% and 5.85% for the solutions based on the space-covariance function (SCF) and the space-time covariance function (STCF), respectively. Our regional gravity solution in the Amazon basin study region, which requires no further post-processing, shows enhanced regional gravity signatures, reduced gravity artifacts, and the gravity solution agrees with NASA/GSFC's GRACE MASCON solution to about 1 cm RMS in terms of water thickness change over the Amazon basin study region. The regional gravity solution also retains the maximum signal energy while suppressing the short wavelength errors.

[1]  C. Hwang,et al.  Water storage loss in central and south Asia from GRACE satellite gravity: correlations with climate data , 2011 .

[2]  S. Gratton,et al.  GRACE-derived surface water mass anomalies by energy integral approach: application to continental hydrology , 2011 .

[3]  R. Steven Nerem,et al.  Ocean mass from GRACE and glacial isostatic adjustment , 2010 .

[4]  Scott B. Luthcke,et al.  Improving global mass flux solutions from Gravity Recovery and Climate Experiment (GRACE) through forward modeling and continuous time correlation , 2010 .

[5]  Don Chambers,et al.  Analysis of seasonal ocean bottom pressure variability in the Gulf of Thailand from GRACE , 2010 .

[6]  C. Shum,et al.  Non-isotropic Gaussian smoothing and leakage reduction for determining mass changes over land and ocean using GRACE data , 2010 .

[7]  Koji Matsuo,et al.  Time-variable ice loss in Asian high mountains from satellite gravimetry , 2010 .

[8]  Steven M. Klosko,et al.  Global Mass Flux Solutions from GRACE: A Comparison of Parameter Estimation Strategies - Mass Concentrations Versus Stokes Coefficients , 2010 .

[9]  A. Eicker,et al.  Deriving daily snapshots of the Earth's gravity field from GRACE L1B data using Kalman filtering , 2009 .

[10]  J. Famiglietti,et al.  Satellite-based estimates of groundwater depletion in India , 2009, Nature.

[11]  C. Shum,et al.  On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions , 2009 .

[12]  H. Save Using regularization for error reduction in GRACE gravity estimation , 2009 .

[13]  A. Eicker Gravity field refinement by radial basis functions from satellite data , 2009 .

[14]  C. Shum,et al.  Regional four-dimensional hydrological mass variations from GRACE, atmospheric flux convergence, and river gauge data , 2008 .

[15]  Andreas Güntner,et al.  Improvement of Global Hydrological Models Using GRACE Data , 2008 .

[16]  K. Lambeck,et al.  GRACE estimates of sea surface height anomalies in the Gulf of Carpentaria, Australia , 2008 .

[17]  Matthew Rodell,et al.  Analysis of terrestrial water storage changes from GRACE and GLDAS , 2008 .

[18]  B. Schaffrin Minimum mean squared error (MSE) adjustment and the optimal Tykhonov–Phillips regularization parameter via reproducing best invariant quadratic uniformly unbiased estimates (repro-BIQUUE) , 2008 .

[19]  Torsten Mayer-Gürr,et al.  Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE , 2008 .

[20]  M. K. Cheng,et al.  The GGM03 Mean Earth Gravity Model from GRACE , 2007 .

[21]  Archie Paulson,et al.  FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level data , 2007 .

[22]  Byron D. Tapley,et al.  GRACE detects coseismic and postseismic deformation from the Sumatra‐Andaman earthquake , 2007 .

[23]  Yiqun Chen Recovery of terrestrial water storage change from low-low satellite-to-satellite tracking , 2007 .

[24]  M. Weigelt Global and Local Gravity Field Recovery from Satellite-to-Satellite Tracking , 2007 .

[25]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[26]  S. Desai,et al.  Application of the convolution formalism to the ocean tide potential: Results from the Gravity Recovery and Climate Experiment (GRACE) , 2006 .

[27]  Cheinway Hwang,et al.  Spherical harmonic analysis and synthesis using FFT: Application to temporal gravity variation , 2006, Comput. Geosci..

[28]  Christopher Jekeli,et al.  Precise estimation of in situ geopotential differences from GRACE low‐low satellite‐to‐satellite tracking and accelerometer data , 2006 .

[29]  C. Hughes,et al.  Observing seasonal bottom pressure variability in the North Pacific with GRACE , 2006 .

[30]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[31]  C. K. Shum,et al.  Regional high‐resolution spatiotemporal gravity modeling from GRACE data using spherical wavelets , 2006 .

[32]  C. Shum,et al.  GRACE observations of M2 and S2 ocean tides underneath the Filchner‐Ronne and Larsen ice shelves, Antarctica , 2005 .

[33]  Matthew Rodell,et al.  Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time‐variable gravity observations , 2005 .

[34]  F. LeMoine,et al.  Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements , 2005 .

[35]  C. K. Shum,et al.  High-resolution continental water storage recovery from low low satellite-to-satellite tracking , 2005 .

[36]  G. Ramillien,et al.  Global time-variations of hydrological signals from GRACE satellite gravimetry , 2004 .

[37]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[38]  Christopher Jekeli,et al.  Static and temporal gravity field recovery using grace potential difference observables , 2003 .

[39]  J. Kusche,et al.  Regularization of geopotential determination from satellite data by variance components , 2002 .

[40]  Minkang Cheng,et al.  Gravitational perturbation theory for intersatellite tracking , 2002 .

[41]  C. Hwang Gravity recovery using COSMIC GPS data: application of orbital perturbation theory , 2001 .

[42]  Jeongrae Kim,et al.  Simulation study of a low-low satellite-to-satellite tracking mission , 2000 .

[43]  C. Jekeli The determination of gravitational potential differences from satellite-to-satellite tracking , 1999 .

[44]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[45]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[46]  Karl-Rudolf Koch,et al.  Parameter estimation and hypothesis testing in linear models , 1988 .

[47]  H. Moritz Advanced Physical Geodesy , 1980 .

[48]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[49]  Richard H. Rapp,et al.  Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Variance Models. , 1974 .