A Near-Threshold, 0.16 nJ/b OOK-Transmitter With 0.18 nJ/b Noise-Cancelling Super-Regenerative Receiver for the Medical Implant Communications Service

A 0.16 nJ/b MICS transmitter and 0.18 nJ/b super-regenerative receiver are demonstrated, where each is specifically designed to operate in the near-threshold region. The low-VDD transmitter utilizes a sub-harmonic injection-locked ring oscillator, edge combiner for frequency multiplication, and class-C power amplifier. The low-VDD receiver introduces a replica super-regenerative receiver as a method to reject common-mode noise sources, such as supply/substrate coupling, thereby reducing undesired self-oscillations and improving BER. Designed in a 90-nm CMOS process, the test-chip measurements show a sensitivity of -80 dBm at 500 kb/s and -65 dBm at 1 Mb/s, respectively, at a BER less than 10-3, with 340 μW total power.

[1]  D. Werber,et al.  Investigation of RF transmission properties of human tissues , 2006 .

[2]  Brian P. Otis,et al.  A 120μW MICS/ISM-band FSK receiver with a 44μW low-power mode based on injection-locking and 9x frequency multiplication , 2011, 2011 IEEE International Solid-State Circuits Conference.

[3]  Hoi-Jun Yoo,et al.  A 10.8 mW Body Channel Communication/MICS Dual-Band Transceiver for a Unified Body Sensor Network Controller , 2009, IEEE Journal of Solid-State Circuits.

[4]  Eisse Mensink,et al.  A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup+Hold Time , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[5]  Lei Guo,et al.  Short-Range, Wireless Interconnect within a Computing Chassis: Design Challenges , 2010, IEEE Design & Test of Computers.

[6]  Patrick Chiang,et al.  Sub-2-ps, Static Phase Error Calibration Technique Incorporating Measurement Uncertainty Cancellation for Multi-Gigahertz Time-Interleaved T/H Circuits , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  A. Hajimiri,et al.  Jitter and phase noise in ring oscillators , 1999, IEEE J. Solid State Circuits.

[8]  Brian P. Otis,et al.  A Sub-100 $\mu$ W MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication , 2011, IEEE Journal of Solid-State Circuits.

[9]  A.P. Chandrakasan,et al.  Frequency-Domain Analysis of Super-Regenerative Amplifiers , 2009, IEEE Transactions on Microwave Theory and Techniques.

[10]  D. Leeson A simple model of feedback oscillator noise spectrum , 1966 .

[11]  P.D. Bradley,et al.  An ultra low power, high performance Medical Implant Communication System (MICS) transceiver for implantable devices , 2006, 2006 IEEE Biomedical Circuits and Systems Conference.

[12]  Naveen Verma,et al.  Micropower wireless sensors , 2006 .

[13]  Alison J. Burdett,et al.  A 1V, Micropower System-on-Chip for Vital-Sign Monitoring in Wireless Body Sensor Networks , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[14]  Ke Shao,et al.  0.15-nJ/b 3–5-GHz IR-UWB System With Spectrum Tunable Transmitter and Merged-Correlator Noncoherent Receiver , 2011, IEEE Transactions on Microwave Theory and Techniques.

[15]  Anantha Chandrakasan,et al.  A 350μW CMOS MSK transmitter and 400μW OOK super-regenerative receiver for Medical Implant Communications , 2009, 2008 IEEE Symposium on VLSI Circuits.

[16]  Andrea Bevilacqua,et al.  UWB Fast-Hopping Frequency Generation Based on Sub-Harmonic Injection Locking , 2008, IEEE Journal of Solid-State Circuits.

[17]  Stuart N. Wooters,et al.  A 2.6-µW sub-threshold mixed-signal ECG SoC , 2009, 2009 Symposium on VLSI Circuits.

[18]  Patrick Chiang,et al.  A 0.6 mW/Gb/s, 6.4–7.2 Gb/s Serial Link Receiver Using Local Injection-Locked Ring Oscillators in 90 nm CMOS , 2010, IEEE Journal of Solid-State Circuits.

[19]  James W. Nilsson,et al.  Electric Circuits , 1983 .

[20]  Refet Firat Yazicioglu,et al.  Ultra-Low Power Sensor Design for Wireless Body Area Networks - Challenges, Potential Solutions, and Applications , 2009, J. Digit. Content Technol. its Appl..

[21]  Huaping Liu,et al.  Transmitter equalization for multipath interference cancellation in impulse radio ultra-wideband(IR-UWB) transceivers , 2009, 2009 International Symposium on VLSI Design, Automation and Test.

[22]  Andrea Bevilacqua,et al.  UWB Fast-Hopping Frequency Generation Based on Sub-Harmonic Injection Locking , 2008, IEEE J. Solid State Circuits.

[23]  Naveen Verma,et al.  Technologies for Ultradynamic Voltage Scaling , 2010, Proceedings of the IEEE.

[24]  Hoi-Jun Yoo,et al.  A 490uW fully MICS compatible FSK transceiver for implantable devices , 2009, 2009 Symposium on VLSI Circuits.

[25]  M.P. Flynn,et al.  A Fully Integrated Auto-Calibrated Super-Regenerative Receiver in 0.13-$\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[26]  Jri Lee,et al.  Study of Subharmonically Injection-Locked PLLs , 2009, IEEE Journal of Solid-State Circuits.

[27]  E. Jovanov Wireless Technology and System Integration in Body Area Networks for m-Health Applications , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[28]  A. C. W. Wong,et al.  Sensium: an ultra-low-power wireless body sensor network platform: Design & application challenges , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[29]  Christofer Toumazou,et al.  Energy Efficient Medium Access Protocol for Wireless Medical Body Area Sensor Networks , 2008, IEEE Transactions on Biomedical Circuits and Systems.

[30]  Rahul Khanna,et al.  A 90nm-CMOS, 500Mbps, fully-integrated IR-UWB transceiver using pulse injection-locking for receiver phase synchronization , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.