Full-diversity product codes for block erasure and block fading channels

We show how to build full-diversity product codes under both iterative encoding and decoding over non-ergodic channels, in presence of block erasure and block fading. The concept of a rootcheck or a root subcode is introduced by generalizing the same principle recently invented for low-density parity-check codes. We also describe some channel related graphical properties of the new family of product codes, a family referred to as root product codes.

[1]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[2]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[3]  Yair Be'ery,et al.  Convergence analysis of turbo decoding of product codes , 2001, IEEE Trans. Inf. Theory.

[4]  F. Chiaraluce,et al.  Extended Hamming product codes analytical performance evaluation for low error rate applications , 2004, IEEE Transactions on Wireless Communications.

[5]  Raymond Knopp,et al.  On coding for block fading channels , 2000, IEEE Trans. Inf. Theory.

[6]  Harry Leib,et al.  Evaluating the performance of convolutional codes over block fading channels , 1999, IEEE Trans. Inf. Theory.

[7]  Paul H. Siegel,et al.  On the asymptotic performance of iterative decoders for product codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[8]  Dana S. Nau,et al.  On the asymptotic performance of IDA* , 1997, Annals of Mathematics and Artificial Intelligence.

[9]  Jehoshua Bruck,et al.  Low density MDS codes and factors of complete graphs , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[10]  T. A. Gulliver,et al.  Asymptotic performance of product codes , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[11]  Joseph J. Boutros,et al.  Near Outage Limit Space-Time Coding for MIMO channels , 2006 .

[12]  Jacek Ilow,et al.  Erasure rate analysis and tighter upper bound for binary product codes , 2006, IEEE Communications Letters.

[13]  Amir K. Khandani,et al.  On structure and decoding of product codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[14]  R. Blahut Algebraic Codes for Data Transmission , 2002 .

[15]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[16]  Omar Al-Askary,et al.  Iterative decoding of product codes , 2003 .

[17]  Loïc Brunel,et al.  Optimal linear precoding for BICM over MIMO channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[18]  John G. Proakis Wiley encyclopedia of telecommunications , 2003 .

[19]  P. A. Wintz,et al.  Error Free Coding , 1973 .

[20]  Ezio Biglieri,et al.  Coding for Wireless Channels , 2005 .

[21]  D. Varodayan Investigation of the Elias Product Code Construction for the Binary Erasure Channel , 2002 .

[22]  Arnold M. Michelson,et al.  A two-dimensional product code with robust soft-decision decoding , 1996, IEEE Trans. Commun..

[23]  Ludo M. G. M. Tolhuizen More results on the weight enumerator of product codes , 2002, IEEE Trans. Inf. Theory.

[24]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..

[25]  Ezio Biglieri,et al.  Low-Density Parity-Check Codes for Nonergodic Block-Fading Channels , 2007, IEEE Transactions on Information Theory.