Analysis of the NK2 homeobox gene ceh-24 reveals sublateral motor neuron control of left-right turning during sleep

Sleep is a behavior that is found in all animals that have a nervous system and that have been studied carefully. In Caenorhabditis elegans larvae, sleep is associated with a turning behavior, called flipping, in which animals rotate 180° about their longitudinal axis. However, the molecular and neural substrates of this enigmatic behavior are not known. Here, we identified the conserved NK-2 homeobox gene ceh-24 to be crucially required for flipping. ceh-24 is required for the formation of processes and for cholinergic function of sublateral motor neurons, which separately innervate the four body muscle quadrants. Knockdown of cholinergic function in a subset of these sublateral neurons, the SIAs, abolishes flipping. The SIAs depolarize during flipping and their optogenetic activation induces flipping in a fraction of events. Thus, we identified the sublateral SIA neurons to control the three-dimensional movements of flipping. These neurons may also control other types of motion. DOI: http://dx.doi.org/10.7554/eLife.24846.001

[1]  William R. Schafer,et al.  C. elegans TRP Family Protein TRP-4 Is a Pore-Forming Subunit of a Native Mechanotransduction Channel , 2010, Neuron.

[2]  A. Alfonso,et al.  Cloning and characterization of the choline acetyltransferase structural gene (cha-1) from C. elegans , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  G. Tononi,et al.  Is Sleep Essential? , 2008, PLoS biology.

[4]  Jerome M. Siegel,et al.  Sleep viewed as a state of adaptive inactivity , 2009, Nature Reviews Neuroscience.

[5]  Shane T. Jensen,et al.  Macromolecule biosynthesis: a key function of sleep. , 2007, Physiological genomics.

[6]  H. Horvitz,et al.  Egg-laying defective mutants of the nematode Caenorhabditis elegans. , 1983, Genetics.

[7]  H. Bringmann,et al.  An AP2 Transcription Factor Is Required for a Sleep-Active Neuron to Induce Sleep-like Quiescence in C. elegans , 2013, Current Biology.

[8]  M. Chalfie,et al.  Assaying mechanosensation. , 2014, WormBook : the online review of C. elegans biology.

[9]  Adela Ben-Yakar,et al.  Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans , 2015, eLife.

[10]  Robert Stickgold,et al.  To sleep, perchance to gain creative insight? , 2004, Trends in Cognitive Sciences.

[11]  A. Fire,et al.  Muscle and nerve-specific regulation of a novel NK-2 class homeodomain factor in Caenorhabditis elegans. , 1998, Development.

[12]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[13]  H. Bringmann,et al.  Agarose hydrogel microcompartments for imaging sleep- and wake-like behavior and nervous system development in Caenorhabditis elegans larvae , 2011, Journal of Neuroscience Methods.

[14]  W. Schafer,et al.  Analysis of NPR-1 Reveals a Circuit Mechanism for Behavioral Quiescence in C. elegans , 2013, Neuron.

[15]  R. L. Russell,et al.  Choline acetyltransferase-deficient mutants of the nematode Caenorhabditis elegans. , 1984, Genetics.

[16]  A. Rougvie,et al.  Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. , 1999, Science.

[17]  L. Avery,et al.  Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: a model for satiety. , 2008, Cell metabolism.

[18]  M. Tafti,et al.  Genetics of sleep and sleep disorders. , 2003, Frontiers in bioscience : a journal and virtual library.

[19]  Matthew M. Crane,et al.  Real-time multimodal optical control of neurons and muscles in freely-behaving Caenorhabditis elegans , 2011, Nature Methods.

[20]  A. Hart,et al.  Deep conservation of genes required for both Drosphila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling. , 2014, Sleep.

[21]  H. Bringmann,et al.  Agarose Microchambers for Long-term Calcium Imaging of Caenorhabditis elegans , 2015, Journal of visualized experiments : JoVE.

[22]  S. Ishiura,et al.  Dopamine Modulates Acetylcholine Release via Octopamine and CREB Signaling in Caenorhabditis elegans , 2013, PloS one.

[23]  David Biron,et al.  The microarchitecture of C. elegans behavior during lethargus: homeostatic bout dynamics, a typical body posture, and regulation by a central neuron. , 2013, Sleep.

[24]  N. Pujol,et al.  The homeodomain protein CePHOX2/CEH-17 controls antero-posterior axonal growth in C. elegans. , 2000, Development.

[25]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[26]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[27]  Mary A. Carskadon,et al.  To sleep, perchance to learn , 1996, Nature.

[28]  T. Porkka-Heiskanen,et al.  Sleep homeostasis , 2013, Current Opinion in Neurobiology.

[29]  Tomoya Yamaguchi,et al.  NKX2-1/TTF-1: an enigmatic oncogene that functions as a double-edged sword for cancer cell survival and progression. , 2013, Cancer cell.

[30]  David M. Raizen,et al.  Lethargus is a Caenorhabditis elegans sleep-like state , 2008, Nature.

[31]  David M. Raizen,et al.  Conservation of sleep: insights from non-mammalian model systems , 2008, Trends in Neurosciences.

[32]  TfAP-2 is required for night sleep in Drosophila , 2016, BMC Neuroscience.

[33]  D. Kleinfeld,et al.  ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation , 2013, Nature Neuroscience.

[34]  K. Kiontke,et al.  Ecology of Caenorhabditis species. , 2006, WormBook : the online review of C. elegans biology.

[35]  C. Saper,et al.  Hypothalamic regulation of sleep and circadian rhythms , 2005, Nature.

[36]  R. Schwartz,et al.  Regulation of organ development by the NKX-homeodomain factors: an NKX code. , 2005, Cellular and molecular biology.

[37]  C. Kenyon,et al.  Stimulation of Movement in a Quiescent, Hibernation-Like Form of Caenorhabditis elegans by Dopamine Signaling , 2009, The Journal of Neuroscience.

[38]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[39]  H. Bringmann,et al.  Reduced activity of a sensory neuron during a sleep-like state in Caenorhabditis elegans , 2011, Current Biology.

[40]  J. Siegel,et al.  Unearthing the Phylogenetic Roots of Sleep , 2008, Current Biology.

[41]  A. Frand,et al.  LIN-42/PERIOD Controls Cyclical and Developmental Progression of C. elegans Molts , 2011, Current Biology.

[42]  Stanislav Nagy,et al.  Measurements of behavioral quiescence in Caenorhabditis elegans. , 2014, Methods.

[43]  Paul W Sternberg,et al.  Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans , 2007, Nature Neuroscience.

[44]  C. Fang-Yen,et al.  The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans , 2013, Nature Communications.

[45]  Elizabeth Casey,et al.  Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. , 2001, Genetics.

[46]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[47]  H. Bringmann,et al.  Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep , 2016, eLife.

[48]  Uri Alon,et al.  A cellular and regulatory map of the cholinergic nervous system of C. elegans , 2015, eLife.

[49]  H. Bringmann,et al.  Reduced muscle contraction and a relaxed posture during sleep-like Lethargus , 2012, Worm.

[50]  Scott S. Campbell,et al.  Animal sleep: A review of sleep duration across phylogeny , 1984, Neuroscience & Biobehavioral Reviews.

[51]  C H Fox,et al.  The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. , 1996, Genes & development.

[52]  C. Saper,et al.  Sleep State Switching , 2010, Neuron.

[53]  L. Avery,et al.  Mutations in a C. elegans Gqα Gene Disrupt Movement, Egg Laying, and Viability , 1996, Neuron.

[54]  D. Raizen,et al.  FMRFamide-like FLP-13 Neuropeptides Promote Quiescence following Heat Stress in Caenorhabditis elegans , 2014, Current Biology.

[55]  Jonathan T. Pierce-Shimomura,et al.  The burrowing behavior of the nematode Caenorhabditis elegans: a new assay for the study of neuromuscular disorders , 2015, Genes, brain, and behavior.

[56]  A. Alfonso,et al.  The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. , 1993, Science.

[57]  Sharad Ramanathan,et al.  Optical interrogation of neural circuits in Caenorhabditis elegans , 2009, Nature Methods.

[58]  Subhajyoti De,et al.  Dopamine Mediates Context-Dependent Modulation of Sensory Plasticity in C. elegans , 2007, Neuron.

[59]  H. Bringmann,et al.  Automated analysis of sleep control via a single neuron active at sleep onset in C. elegans , 2015, Genesis.

[60]  David Biron,et al.  Sleep and Development in Genetically Tractable Model Organisms , 2016, Genetics.

[61]  Paul W. Sternberg,et al.  Multilevel Modulation of a Sensory Motor Circuit during C. elegans Sleep and Arousal , 2014, Cell.

[62]  David Biron,et al.  Homeostasis in C. elegans sleep is characterized by two behaviorally and genetically distinct mechanisms , 2014, eLife.

[63]  Rajesh Ranganathan,et al.  C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway , 2000, Neuron.

[64]  A. Schier,et al.  Neuropeptidergic control of sleep and wakefulness. , 2014, Annual review of neuroscience.

[65]  Cori Bargmann,et al.  Wnt-Ror signaling to SIA and SIB neurons directs anterior axon guidance and nerve ring placement in C. elegans , 2009, Development.

[66]  David Biron,et al.  Why Do Sleeping Nematodes Adopt a Hockey-Stick-Like Posture? , 2014, PloS one.

[67]  David M. Raizen,et al.  Call it Worm Sleep , 2016, Trends in Neurosciences.

[68]  Junho Lee,et al.  Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons , 2011, Nature Neuroscience.

[69]  Abraham J. Wyner,et al.  DAF-16/FOXO Regulates Homeostasis of Essential Sleep-like Behavior during Larval Transitions in C. elegans , 2013, Current Biology.

[70]  Park Ec,et al.  Mutations with dominant effects on the behavior and morphology of the nematode Caenorhabditis elegans. , 1986 .

[71]  Aravinthan D. T. Samuel,et al.  C. elegans locomotion: small circuits, complex functions , 2015, Current Opinion in Neurobiology.

[72]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[73]  Zeynep F. Altun,et al.  WormAtlas Hermaphrodite Handbook - Nervous System - General Description , 2005 .

[74]  Stefanie Redemann,et al.  Codon adaptation–based control of protein expression in C. elegans , 2011, Nature Methods.

[75]  Itai Yanai,et al.  Developmental milestones punctuate gene expression in the Caenorhabditis embryo. , 2012, Developmental cell.

[76]  D. Raizen,et al.  Cellular Stress Induces a Protective Sleep-like State in C. elegans , 2014, Current Biology.

[77]  H. Schnabel,et al.  Ballistic transformation of Caenorhabditis elegans. , 1999, Gene.

[78]  S. Fields,et al.  Identification of major classes of cholinergic neurons in the nematode Caenorhabditis elegans , 2008, The Journal of comparative neurology.

[79]  G. Seydoux,et al.  Transgenic solutions for the germline , 2010, WormBook : the online review of C. elegans biology.

[80]  L. Avery,et al.  Mutations in a C. elegans Gqalpha gene disrupt movement, egg laying, and viability. , 1996, Neuron.

[81]  Daniel J. R. Christensen,et al.  Sleep Drives Metabolite Clearance from the Adult Brain , 2013, Science.

[82]  Horvitz,et al.  Mutations with dominant effects on the behavior and morphology of the nematode Caenorhabditis elegans. , 1986, Genetics.

[83]  H. Bringmann,et al.  Reduced Sleep-Like Quiescence in Both Hyperactive and Hypoactive Mutants of the Galphaq Gene egl-30 during lethargus in Caenorhabditis elegans , 2013, PloS one.

[84]  D. Raizen,et al.  Distinct Mechanisms Underlie Quiescence during Two Caenorhabditis elegans Sleep-Like States , 2015, The Journal of Neuroscience.

[85]  J. Born,et al.  The memory function of sleep , 2010, Nature Reviews Neuroscience.

[86]  R. Cassada,et al.  The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. , 1975, Developmental biology.

[87]  A. Borbély A two process model of sleep regulation. , 1982, Human neurobiology.

[88]  J. Sulston,et al.  Some Observations On Moulting in Caenorhabditis Elegans , 1978 .