An Isogeometric Analysis approach for the study of the gyrokinetic quasi-neutrality equation
暂无分享,去创建一个
Ahmed Ratnani | Eric Sonnendrücker | Nicolas Crouseilles | E. Sonnendrücker | N. Crouseilles | A. Ratnani
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] Olivier Czarny,et al. Bézier surfaces and finite elements for MHD simulations , 2008, J. Comput. Phys..
[3] J. Krommes,et al. Nonlinear gyrokinetic equations , 1983 .
[4] T. Hughes,et al. Efficient quadrature for NURBS-based isogeometric analysis , 2010 .
[5] J. L. V. Lewandowski,et al. A finite element Poisson solver for gyrokinetic particle simulations in a global field aligned mesh , 2006, J. Comput. Phys..
[6] R. A. Kolesnikov,et al. On higher order corrections to gyrokinetic Vlasov―Poisson equations in the long wavelength limit , 2009 .
[7] Tom Lyche,et al. T-spline Simplication and Local Renement , 2004 .
[8] Hartmut Prautzsch,et al. A fast algorithm to raise the degree of spline curves , 1991, Comput. Aided Geom. Des..
[9] W. W. Lee,et al. Gyrokinetic approach in particle simulation , 1981 .
[10] J. Kruth,et al. NURBS curve and surface fitting for reverse engineering , 1998 .
[11] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[12] T. S. Hahm,et al. Nonlinear gyrokinetic equations for tokamak microturbulence , 1988 .
[13] Virginie Grandgirard,et al. Some parallel algorithms for the Quasineutrality solver of GYSELA , 2011 .
[14] R. Bartels,et al. Fitting Uncertain Data with NURBS , 1997 .
[15] Charlson C. Kim,et al. Comparisons and physics basis of tokamak transport models and turbulence simulations , 2000 .
[16] Guillaume Latu,et al. Parallel bottleneck in the Quasineutrality solver embedded in GYSELA , 2011 .
[17] John R. Rice,et al. Direct solution of partial difference equations by tensor product methods , 1964 .
[19] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[20] C. D. Boor,et al. Collocation at Gaussian Points , 1973 .
[21] Tom Lyche,et al. T-spline simplification and local refinement , 2004, ACM Trans. Graph..
[22] Laurent Villard,et al. A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation , 2006, J. Comput. Phys..
[23] Ahmed Ratnani,et al. An Arbitrary High-Order Spline Finite Element Solver for the Time Domain Maxwell Equations , 2012, J. Sci. Comput..
[24] C. Loan. The ubiquitous Kronecker product , 2000 .
[25] Perkins,et al. Fluid moment models for Landau damping with application to the ion-temperature-gradient instability. , 1990, Physical review letters.
[26] Guillaume Latu,et al. Scalable Quasineutral Solver for Gyrokinetic Simulation , 2011, PPAM.
[27] John A. Evans,et al. Isogeometric Analysis , 2010 .
[28] Ralph R. Martin,et al. Fast degree elevation and knot insertion for B-spline curves , 2005, Comput. Aided Geom. Des..
[29] R. Hatzky,et al. Energy conservation in a nonlinear gyrokinetic particle-in-cell code for ion-temperature-gradient-driven modes in θ-pinch geometry , 2002 .
[30] Thomas J. R. Hughes,et al. n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .
[31] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[32] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.