Stochastic modeling of the chemostat
暂无分享,去创建一个
[1] D. Gillespie. The chemical Langevin equation , 2000 .
[2] T. Kurtz. Solutions of ordinary differential equations as limits of pure jump markov processes , 1970, Journal of Applied Probability.
[3] Johan Grasman,et al. Breakdown of a Chemostat Exposed to Stochastic Noise , 2005 .
[4] Kenny S. Crump,et al. Some stochastic features of bacterial constant growth apparatus , 1979 .
[5] Tiejun Li,et al. Analysis of Explicit Tau-Leaping Schemes for Simulating Chemically Reacting Systems , 2007, Multiscale Model. Simul..
[6] F. Campillo,et al. Stochastic models for the chemostat , 2010, 1011.5108.
[7] Philip K. Pollett,et al. Diffusion approximations for ecological models , 2001 .
[8] L. Rogers. Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .
[9] Paul Waltman,et al. The Theory of the Chemostat , 1995 .
[10] P K Pollett,et al. On parameter estimation in population models II: multi-dimensional processes and transient dynamics. , 2009, Theoretical population biology.
[12] D. Herbert,et al. The continuous culture of bacteria; a theoretical and experimental study. , 1956, Journal of general microbiology.
[13] J V Ross,et al. On parameter estimation in population models. , 2006, Theoretical population biology.
[14] S. Ethier,et al. Markov Processes: Characterization and Convergence , 2005 .
[15] David F. Anderson,et al. Error analysis of tau-leap simulation methods , 2009, 0909.4790.
[16] Bernard Lapeyre,et al. Introduction to Stochastic Calculus Applied to Finance , 2007 .
[17] D. Gillespie,et al. Avoiding negative populations in explicit Poisson tau-leaping. , 2005, The Journal of chemical physics.
[18] Gregory Stephanopoulos,et al. A stochastic analysis of the growth of competing microbial populations in a continuous biochemical reactor , 1979 .
[19] Linda R. Petzold,et al. Improved leap-size selection for accelerated stochastic simulation , 2003 .
[20] T. Kurtz. Limit theorems for sequences of jump Markov processes approximating ordinary differential processes , 1971, Journal of Applied Probability.
[21] Darren J. Wilkinson. Stochastic Modelling for Systems Biology , 2006 .
[22] D. Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .
[23] A. Diop. Sur la discrétisation et le comportement à petit bruit d'EDS unidimensionnelles dont les coefficients sont à dérivées singulières , 2003 .
[24] T. Horiuchi. [Continuous culture of bacteria]. , 1972, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.
[25] Hugh P. Possingham,et al. Do life history traits affect the accuracy of diffusion approximations for mean time to extinction , 2002 .
[26] Sebastian Walcher,et al. Exclusion and persistence in deterministic and stochastic chemostat models , 2005 .
[27] Muruhan Rathinam,et al. Consistency and Stability of Tau-Leaping Schemes for Chemical Reaction Systems , 2005, Multiscale Model. Simul..
[28] A. Novick,et al. Description of the chemostat. , 1950, Science.