Phase transitions in confined water nanofilms

Phase transitions in water are normally classified as first or second order. But in confined quasi-one-dimensional films of water, simulations show that the solid–liquid transition can take place by means of a first-order transition or a continuous one without a distinction between solid and liquid.

[1]  K. Gubbins,et al.  Existence of a hexatic phase in porous media. , 2002, Physical review letters.

[2]  J. P. Garrahan,et al.  Dynamic Order-Disorder in Atomistic Models of Structural Glass Formers , 2009, Science.

[3]  Ronen Zangi,et al.  Water confined to a slab geometry: a review of recent computer simulation studies , 2004 .

[4]  W. Steele The interaction of gases with solid surfaces , 1974 .

[5]  Kenichiro Koga,et al.  First-order transition in confined water between high-density liquid and low-density amorphous phases , 2000, Nature.

[6]  H. Eugene Stanley,et al.  Phase behaviour of metastable water , 1992, Nature.

[7]  L. Landau,et al.  statistical-physics-part-1 , 1958 .

[8]  N. D. Mermin,et al.  Crystalline Order in Two Dimensions , 1968 .

[9]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[10]  J. Frenken,et al.  Experimental evidence for ice formation at room temperature. , 2008, Physical review letters.

[11]  S Hancocks,et al.  I go to a friend , 2001, British dental journal.

[12]  Kenichiro Koga,et al.  Freezing of Confined Water: A Bilayer Ice Phase in Hydrophobic Nanopores , 1997 .

[13]  J. G. Dash History of the search for continuous melting , 1999 .

[14]  H. Stanley,et al.  Absence of a diffusion anomaly of water in the direction perpendicular to hydrophobic nanoconfining walls. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  H. Stanley,et al.  Hydrogen-bond dynamics of water in a quasi-two-dimensional hydrophobic nanopore slit. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  D. Nelson Two-dimensional melting , 1981 .

[17]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[18]  Peter J. Rossky,et al.  A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces—a molecular dynamics simulation study , 1994 .

[19]  Pablo G Debenedetti,et al.  Phase transitions induced by nanoconfinement in liquid water. , 2009, Physical review letters.

[20]  V. Gubanov,et al.  Interaction of gases with solid surfaces , 1988 .

[21]  Frenkel,et al.  Dislocation unbinding in dense two-dimensional crystals. , 1995, Physical review letters.

[22]  Uri Raviv,et al.  Fluidity of water confined to subnanometre films , 2001, Nature.

[23]  M. Dzugutov,et al.  Evidence for a liquid-solid critical point in a simple monatomic system , 2009, 0906.4947.

[24]  H Eugene Stanley,et al.  Thermodynamics, structure, and dynamics of water confined between hydrophobic plates. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[26]  Michael W. Mahoney,et al.  A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions , 2000 .

[27]  Kenichiro Koga,et al.  Formation of ordered ice nanotubes inside carbon nanotubes , 2001, Nature.

[28]  K. Koga Freezing in one-dimensional liquids , 2003 .

[29]  K. Morishige,et al.  Freezing and melting of water in a single cylindrical pore: The pore-size dependence of freezing and melting behavior , 1999 .

[30]  P. Ball New horizons in inner space , 1993, Nature.

[31]  R. Griffiths THERMODYNAMICS NEAR THE TWO-FLUID CRITICAL MIXING POINT IN $sup 3$He--$sup 4$He. , 1970 .

[32]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[33]  Jianping Gao,et al.  Layering Transitions and Dynamics of Confined Liquid Films , 1997 .