On the Second Deformation Lemma

In the framework of critical point theory for continuous functionals defined on metric spaces, we give a new, simpler proof of the so-called Second Deformation Lemma, a basic tool of Morse theory.

[1]  Guy Katriel,et al.  Mountain pass theorems and global homeomorphism theorems , 1994 .

[2]  R. Ho Algebraic Topology , 2022 .

[3]  J. Corvellec Morse Theory for Continuous Functionals , 1995 .

[4]  M Morse,et al.  Functional Topology and Abstract Variational Theory. , 1936, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Wolfgang Meyer,et al.  On differentiable functions with isolated critical points , 1969 .

[6]  G. Prodi,et al.  METODI PERTURBATIVI NELLA TEORIA DI MORSE , 1975 .

[7]  Marco Degiovanni,et al.  A critical point theory for nonsmooth functional , 1994 .

[8]  Marco Degiovanni,et al.  Deformation properties for continuous functionals and critical point theory , 1993 .

[9]  Marco Degiovanni,et al.  Nonsmooth critical point theory and quasilinear elliptic equations , 1995 .

[10]  Bernard Cornet,et al.  Existence of generalized equilibria , 2001 .

[11]  A. Ioffe,et al.  Metric critical point theory. 1. Morse regularity and homotopic stability of a minimum , 1996 .

[12]  A. Ioffe,et al.  Metric critical point theory 2: deformation techniques , 1997 .

[13]  J. Corvellec,et al.  Nontrivial Solutions of Quasilinear Equations via Nonsmooth Morse Theory , 1997 .

[14]  Jean-Noël Corvellec,et al.  Quantitative deformation theorems and critical point theory , 1999 .

[15]  Sergio Lancelotti Morse index estimates for continuous functionals associated with quasilinear elliptic equations , 2002, Advances in Differential Equations.

[16]  Karol Borsuk,et al.  Theory Of Retracts , 1967 .

[17]  Marco Degiovanni,et al.  Closed Geodesics with Lipschitz Obstacle , 1999 .

[18]  Kuang-Chao Chang In nite Dimensional Morse Theory and Multiple Solution Problems , 1992 .

[19]  Kung-Ching Chang,et al.  Solutions of Asymptotically Linear Operator Equations via Morse Theory. , 1981 .

[20]  E. Rothe Morse theory in Hilbert space , 1973 .

[21]  Sze-Tsen Hu,et al.  Theory of Retracts. , 1968 .