Strong phonon softening and avoided crossing in aliovalence-doped heavy-band thermoelectrics

Aliovalent doping has been adopted to optimize the electrical properties of semiconductors, while its impact on the phonon structure and propagation is seldom paid proper attention to. This work reveals that aliovalent doping can be much more effective in reducing the lattice thermal conductivity of thermoelectric semiconductors than the commonly employed isoelectronic alloying strategy. As demonstrated in the heavy-band NbFeSb system, a large reduction of 65% in the lattice thermal conductivity is achieved through only 10% aliovalent Hf-doping, compared to the 4 times higher isoelectronic Ta-alloying. It is elucidated that aliovalent doping introduces free charge carriers and enhances the screening, leading to the giant softening and deceleration of optical phonons. Moreover, the heavy dopant can induce the avoided-crossing of acoustic and optical phonon branches, further decelerating the acoustic phonons. These results highlight the significant role of aliovalent dopants in regulating the phonon structure and suppressing the phonon propagation of semiconductors.

[1]  G. J. Snyder,et al.  Key properties of inorganic thermoelectric materials—tables (version 1) , 2022, Journal of Physics: Energy.

[2]  Weijun Ren,et al.  Ultrasensitive barocaloric material for room-temperature solid-state refrigeration , 2021, Nature Communications.

[3]  X. Zhao,et al.  Carrier Grain Boundary Scattering in Thermoelectric Materials , 2022, Energy & Environmental Science.

[4]  Daniel C W Tsang,et al.  Technologies and perspectives for achieving carbon neutrality , 2021, Innovation.

[5]  Lidong Chen,et al.  A Device-to-Material Strategy Guiding the “Double-High” Thermoelectric Module , 2020 .

[6]  Richard Dronskowski,et al.  LOBSTER: Local orbital projections, atomic charges, and chemical‐bonding analysis from projector‐augmented‐wave‐based density‐functional theory , 2020, J. Comput. Chem..

[7]  Xinbing Zhao,et al.  Half‐Heusler Thermoelectric Module with High Conversion Efficiency and High Power Density , 2020, Advanced Energy Materials.

[8]  David J. Singh,et al.  Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials , 2020, Nature Communications.

[9]  David J. Singh,et al.  Understanding the asymmetrical thermoelectric performance for discovering promising thermoelectric materials , 2019, Science Advances.

[10]  Yue Chen,et al.  Lattice Strain Advances Thermoelectrics , 2019, Joule.

[11]  X. Zhao,et al.  Transport mechanisms and property optimization of p-type (Zr, Hf)CoSb half-Heusler thermoelectric materials , 2018, Materials Today Physics.

[12]  C. Felser,et al.  Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials , 2018, Advanced materials.

[13]  Jun Mao,et al.  Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency , 2018, Nature Communications.

[14]  Fahima Islam,et al.  Multiphonon: Phonon Density of States tools for Inelastic Neutron Scattering Powder Data , 2018, J. Open Source Softw..

[15]  G. J. Snyder,et al.  Unique Role of Refractory Ta Alloying in Enhancing the Figure of Merit of NbFeSb Thermoelectric Materials , 2018 .

[16]  Terry M. Tritt,et al.  Advances in thermoelectric materials research: Looking back and moving forward , 2017, Science.

[17]  Wei Cai,et al.  Grain Boundary Engineering for Achieving High Thermoelectric Performance in n‐Type Skutterudites , 2017 .

[18]  Jing Zhao,et al.  High Thermoelectric Performance in Electron-Doped AgBi3S5 with Ultralow Thermal Conductivity. , 2017, Journal of the American Chemical Society.

[19]  Bo B. Iversen,et al.  Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2 thermoelectric materials , 2017 .

[20]  B. Iversen,et al.  Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands , 2017, Nature Communications.

[21]  Li‐Ming Wu Concerted Rattling in CsAg5Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. , 2016 .

[22]  Stefan Goedecker,et al.  Ultralow Thermal Conductivity in Full Heusler Semiconductors. , 2016, Physical review letters.

[23]  David J. Singh,et al.  On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective , 2016 .

[24]  G. J. Snyder,et al.  Demonstration of a phonon-glass electron-crystal strategy in (Hf,Zr)NiSn half-Heusler thermoelectric materials by alloying , 2015 .

[25]  Xinbing Zhao,et al.  Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials , 2015, Nature Communications.

[26]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[27]  Chungman Kim,et al.  Thermoelectric properties of Mg3Sb2−xBix single crystals grown by Bridgman method , 2015 .

[28]  Wu Li,et al.  Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe 4 Sb1 2 due to the flat avoided-crossing filler modes , 2015 .

[29]  O. Delaire,et al.  Heavy-impurity resonance, hybridization, and phonon spectral functions in Fe1-xMxSi, M=Ir,Os , 2015 .

[30]  G. J. Snyder,et al.  Thermoelectric Enhancement in BaGa2Sb2 by Zn Doping , 2015 .

[31]  Wenqing Zhang,et al.  High Performance α-MgAgSb Thermoelectric Materials for Low Temperature Power Generation , 2015 .

[32]  Tiejun Zhu,et al.  Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1 , 2015 .

[33]  G. J. Snyder,et al.  High Band Degeneracy Contributes to High Thermoelectric Performance in p‐Type Half‐Heusler Compounds , 2014 .

[34]  Tiejun Zhu,et al.  The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials , 2014, Scientific Reports.

[35]  G. J. Snyder,et al.  Optimum Carrier Concentration in n‐Type PbTe Thermoelectrics , 2014 .

[36]  Tiejun Zhu,et al.  Point Defect Engineering of High‐Performance Bismuth‐Telluride‐Based Thermoelectric Materials , 2014 .

[37]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[38]  Wu Li,et al.  Thermal conductivity of fully filled skutterudites: Role of the filler , 2014 .

[39]  Yuanhua Lin,et al.  Enhanced Thermoelectric Properties of Pb‐doped BiCuSeO Ceramics , 2013, Advanced materials.

[40]  Richard Dronskowski,et al.  Analytic projection from plane‐wave and PAW wavefunctions and application to chemical‐bonding analysis in solids , 2013, J. Comput. Chem..

[41]  G. J. Snyder,et al.  Low Electron Scattering Potentials in High Performance Mg2Si0.45Sn0.55 Based Thermoelectric Solid Solutions with Band Convergence , 2013 .

[42]  A. Srivastava,et al.  Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation , 2013 .

[43]  G. J. Snyder,et al.  High Thermoelectric Efficiency of n‐type PbS , 2013 .

[44]  Heng Wang,et al.  The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions , 2013 .

[45]  Heng Wang,et al.  Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe , 2012, Proceedings of the National Academy of Sciences.

[46]  Junichiro Shiomi,et al.  Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .

[47]  G. J. Snyder,et al.  Introduction to Modeling Thermoelectric Transport at High Temperatures , 2012 .

[48]  G. J. Snyder,et al.  Optimized thermoelectric properties of Mo(3)Sb(7-x)Te(x) with significant phonon scattering by electrons , 2011 .

[49]  A. Shakouri Recent Developments in Semiconductor Thermoelectric Physics and Materials , 2011 .

[50]  G. J. Snyder,et al.  Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material , 2011 .

[51]  Volker L. Deringer,et al.  Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. , 2011, The journal of physical chemistry. A.

[52]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[53]  G. J. Snyder,et al.  Heavily Doped p‐Type PbSe with High Thermoelectric Performance: An Alternative for PbTe , 2011, Advanced materials.

[54]  David J. Singh,et al.  Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.

[55]  O. Delaire,et al.  Phonon softening and metallization of a narrow-gap semiconductor by thermal disorder , 2011, Proceedings of the National Academy of Sciences.

[56]  M. Kaviany,et al.  Filler-reduced phonon conductivity of thermoelectric skutterudites: Ab initio calculations and molecular dynamics simulations , 2010 .

[57]  Steven G. Louie,et al.  EPW: A program for calculating the electron-phonon coupling using maximally localized Wannier functions , 2010, Comput. Phys. Commun..

[58]  John R. D. Copley,et al.  DAVE: A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data , 2009, Journal of research of the National Institute of Standards and Technology.

[59]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[60]  Hannu Mutka,et al.  Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. , 2008, Nature materials.

[61]  Kim Lefmann,et al.  Avoided crossing of rattler modes in thermoelectric materials. , 2008, Nature materials.

[62]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[63]  K. Doll,et al.  Crystallographic disorder and electron-phonon coupling inFe1−xCoxSisingle crystals: Raman spectroscopy study , 2007 .

[64]  Claudia Felser,et al.  Covalent bonding and the nature of band gaps in some half-Heusler compounds , 2005, cond-mat/0509472.

[65]  G. Meisner,et al.  Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds , 2004 .

[66]  O. Sankey,et al.  Theoretical study of the lattice thermal conductivity in Ge framework semiconductors. , 2001, Physical review letters.

[67]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[68]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[69]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[70]  Richard Dronskowski,et al.  Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations , 1993 .

[71]  S. Tamura,et al.  Isotope scattering of dispersive phonons in Ge , 1983 .

[72]  R. Tye,et al.  thermal conductivity , 2019 .

[73]  G. A. Slack,et al.  Thermal Conductivity and Phonon Scattering by Magnetic Impurities in CdTe , 1964 .

[74]  B. Abeles Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures , 1963 .

[75]  Joseph Callaway,et al.  Effect of Point Imperfections on Lattice Thermal Conductivity , 1960 .

[76]  Paul G. Klemens,et al.  Thermal Resistance due to Point Defects at High Temperatures , 1960 .

[77]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[78]  G. A. Slack,et al.  Effect of Isotopes on Low-Temperature Thermal Conductivity , 1957 .

[79]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .