Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron

A molecular dynamics simulation study has been carried out to clarify the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic Fe. Average flow stresses were found to decrease with grain refinement below 14.7 nm, exhibiting a breakdown in the Hall–Petch relation. A change in the dominant deformation mechanism from dislocation glide to grain boundary sliding appeared to be the direct cause of the breakdown in the Hall–Petch relation observed in the present nanocrystalline pure Fe.

[1]  Peter M. Derlet,et al.  Atomistic simulations as guidance to experiments , 2003 .

[2]  Hannes Jónsson,et al.  Systematic analysis of local atomic structure combined with 3D computer graphics , 1994 .

[3]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[4]  H. V. Swygenhoven,et al.  Nucleation and propagation of dislocations in nanocrystalline fcc metals , 2006 .

[5]  Jeffrey Wadsworth,et al.  Hall-petch relation in nanocrystalline solids , 1991 .

[6]  Q. Wei,et al.  Tensile properties of nanocrystalline tantalum from molecular dynamics simulations , 2008 .

[7]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[8]  K. Jacobsen,et al.  Density functional theory studies of screw dislocation core structures in bcc metals , 2003 .

[9]  D. Farkas,et al.  Improving the ductility of nanocrystalline bcc metals. , 2005, Nano letters.

[10]  K. T. Ramesh,et al.  Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron , 2003 .

[11]  Marc Fivel,et al.  The glide of screw dislocations in bcc Fe: Atomistic static and dynamic simulations ☆ , 2006 .

[12]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[13]  Seungwu Han,et al.  Development of new interatomic potentials appropriate for crystalline and liquid iron , 2003 .

[14]  W. W. Milligan,et al.  Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films , 1995 .

[15]  Sidney Yip,et al.  Nanocrystals: The strongest size , 1998, Nature.

[16]  X. Feaugas,et al.  Effects of grain orientation on the Hall–Petch relationship in electrodeposited nickel with nanocrystalline grains , 2010 .

[17]  A. Mukherjee,et al.  Deformation mechanism crossover and mechanical behaviour in nanocrystalline materials , 2003 .

[18]  Peter M. Derlet,et al.  Developing realistic grain boundary networks for use in molecular dynamics simulations , 2005 .

[19]  K. Jacobsen,et al.  Simulations of intergranular fracture in nanocrystalline molybdenum , 2004 .

[20]  Tae Kwon Ha,et al.  An internal variable theory of structural superplasticity , 1998 .

[21]  Simon R. Phillpot,et al.  Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation , 2002, Nature materials.

[22]  Paul G. Sanders,et al.  Elastic and tensile behavior of nanocrystalline copper and palladium , 1997 .

[23]  Subra Suresh,et al.  Deformation of electrodeposited nanocrystalline nickel , 2003 .

[24]  Subra Suresh,et al.  Mechanical behavior of nanocrystalline metals and alloys , 2003 .

[25]  A. Saxena,et al.  Plastic deformation of nanocrystalline copper-antimony alloys , 2010 .

[26]  H. Van Swygenhoven,et al.  Stacking fault energies and slip in nanocrystalline metals , 2004, Nature materials.

[27]  R. Averback,et al.  Yield strength in nanocrystalline Cu during high strain rate deformation , 2009 .

[28]  R. Averback,et al.  Quantitative description of plastic deformation in nanocrystalline Cu: Dislocation glide versus grain boundary sliding , 2008 .

[29]  C. V. D. Walt Slip in the B.C.C. metals , 1969 .