The conforming virtual element method for polyharmonic problems

In this work, we exploit the capability of virtual element methods in accommodating approximation spaces featuring high-order continuity to numerically approximate differential problems of the form $\Delta^p u =f$, $p\ge1$. More specifically, we develop and analyze the conforming virtual element method for the numerical approximation of polyharmonic boundary value problems, and prove an abstract result that states the convergence of the method in the energy norm.

[1]  Gianmarco Manzini,et al.  Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.

[2]  Gianmarco Manzini,et al.  The nonconforming Virtual Element Method for eigenvalue problems , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[3]  G. Vacca An H1-conforming virtual element for Darcy and Brinkman equations , 2017 .

[4]  Annalisa Buffa,et al.  Mimetic finite differences for elliptic problems , 2009 .

[5]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[6]  Steven M. Wise,et al.  EFFICIENT PHASE-FIELD SIMULATION OF QUANTUM DOT FORMATION IN A STRAINED HETEROEPITAXIAL FILM , 2004 .

[7]  Anna Scotti,et al.  MIMETIC FINITE DIFFERENCE APPROXIMATION OF FLOWS IN FRACTURED POROUS MEDIA , 2016 .

[8]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[9]  Matteo Bruggi,et al.  On the virtual element method for topology optimization on polygonal meshes: A numerical study , 2016, Comput. Math. Appl..

[10]  Gianmarco Manzini,et al.  Virtual Element Methods for Elliptic Problems on Polygonal Meshes , 2017 .

[11]  P. F. Antonietti,et al.  The fully nonconforming virtual element method for biharmonic problems , 2016, 1611.08736.

[12]  P. F. Antonietti,et al.  A multigrid algorithm for the $p$-version of the Virtual Element Method , 2017, 1703.02285.

[13]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[14]  Paul Houston,et al.  hp-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes , 2016 .

[15]  Mira Schedensack,et al.  A New Discretization for mth-Laplace Equations with Arbitrary Polynomial Degrees , 2015, SIAM J. Numer. Anal..

[16]  Steven M. Wise,et al.  Quantum dot formation on a strain-patterned epitaxial thin film , 2005 .

[17]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[18]  Ivonne Sgura,et al.  Virtual Element Method for the Laplace-Beltrami equation on surfaces , 2016, 1612.02369.

[19]  Alexandre Ern,et al.  An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators , 2014, Comput. Methods Appl. Math..

[20]  Emmanuil H. Georgoulis,et al.  A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.

[21]  Jerome Droniou,et al.  FINITE VOLUME SCHEMES FOR DIFFUSION EQUATIONS: INTRODUCTION TO AND REVIEW OF MODERN METHODS , 2014, 1407.1567.

[22]  Stefano Giani,et al.  Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains , 2016, IEEE CSE 2016.

[23]  Paul Houston,et al.  Fast Numerical Integration on Polytopic Meshes with Applications to Discontinuous Galerkin Finite Element Methods , 2018, J. Sci. Comput..

[24]  Raphaèle Herbin,et al.  Small-stencil 3D schemes for diffusive flows in porous media , 2012 .

[25]  John W. Barrett,et al.  Finite element approximation of a sixth order nonlinear degenerate parabolic equation , 2004, Numerische Mathematik.

[26]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[27]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .

[28]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[29]  Simone Scacchi,et al.  A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..

[30]  Bo Dong,et al.  A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..

[31]  Gianmarco Manzini,et al.  The Virtual Element Method for Eigenvalue Problems with Potential Terms on Polytopic Meshes , 2018, Applications of Mathematics.

[32]  Richard S. Falk,et al.  A mixed-Lagrange multiplier finite element method for the polyharmonic equation , 1985 .

[33]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[34]  Stefano Berrone,et al.  The virtual element method for discrete fracture network simulations , 2014 .

[35]  Francesca Gardini,et al.  Virtual element method for second-order elliptic eigenvalue problems , 2016, 1610.03675.

[36]  L. B. D. Veiga,et al.  A virtual element method with arbitrary regularity , 2014 .

[37]  Paola F. Antonietti,et al.  Mimetic Discretizations of Elliptic Control Problems , 2013, J. Sci. Comput..

[38]  Gianmarco Manzini,et al.  Hourglass stabilization and the virtual element method , 2015 .

[39]  Alain Miranville,et al.  Sixth‐order Cahn–Hilliard systems with dynamic boundary conditions , 2015 .

[40]  Lourenço Beirão da Veiga,et al.  A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..

[41]  Ming Wang,et al.  Minimal finite element spaces for 2m-th-order partial differential equations in Rn , 2012, Math. Comput..

[42]  Dietmar Gallistl,et al.  Stable splitting of polyharmonic operators by generalized Stokes systems , 2017, Math. Comput..

[43]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[44]  Gianmarco Manzini,et al.  The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..

[45]  Thirupathi Gudi,et al.  An interior penalty method for a sixth-order elliptic equation , 2011 .

[46]  L. Donatella Marini,et al.  Virtual Element Method for fourth order problems: L2-estimates , 2016, Comput. Math. Appl..

[47]  Paola F. Antonietti,et al.  Bubble stabilization of Discontinuous Galerkin methods , 2009 .

[48]  Shaochun Chen,et al.  The nonconforming virtual element method for plate bending problems , 2016 .

[49]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[50]  Lars Ludwig,et al.  Finite element superconvergence on Shishkin meshes for convection–diffusion problems with corner singularities , 2014 .