The conforming virtual element method for polyharmonic problems
暂无分享,去创建一个
[1] Gianmarco Manzini,et al. Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.
[2] Gianmarco Manzini,et al. The nonconforming Virtual Element Method for eigenvalue problems , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.
[3] G. Vacca. An H1-conforming virtual element for Darcy and Brinkman equations , 2017 .
[4] Annalisa Buffa,et al. Mimetic finite differences for elliptic problems , 2009 .
[5] Glaucio H. Paulino,et al. On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .
[6] Steven M. Wise,et al. EFFICIENT PHASE-FIELD SIMULATION OF QUANTUM DOT FORMATION IN A STRAINED HETEROEPITAXIAL FILM , 2004 .
[7] Anna Scotti,et al. MIMETIC FINITE DIFFERENCE APPROXIMATION OF FLOWS IN FRACTURED POROUS MEDIA , 2016 .
[8] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[9] Matteo Bruggi,et al. On the virtual element method for topology optimization on polygonal meshes: A numerical study , 2016, Comput. Math. Appl..
[10] Gianmarco Manzini,et al. Virtual Element Methods for Elliptic Problems on Polygonal Meshes , 2017 .
[11] P. F. Antonietti,et al. The fully nonconforming virtual element method for biharmonic problems , 2016, 1611.08736.
[12] P. F. Antonietti,et al. A multigrid algorithm for the $p$-version of the Virtual Element Method , 2017, 1703.02285.
[13] Ahmed Alsaedi,et al. Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..
[14] Paul Houston,et al. hp-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes , 2016 .
[15] Mira Schedensack,et al. A New Discretization for mth-Laplace Equations with Arbitrary Polynomial Degrees , 2015, SIAM J. Numer. Anal..
[16] Steven M. Wise,et al. Quantum dot formation on a strain-patterned epitaxial thin film , 2005 .
[17] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[18] Ivonne Sgura,et al. Virtual Element Method for the Laplace-Beltrami equation on surfaces , 2016, 1612.02369.
[19] Alexandre Ern,et al. An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators , 2014, Comput. Methods Appl. Math..
[20] Emmanuil H. Georgoulis,et al. A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.
[21] Jerome Droniou,et al. FINITE VOLUME SCHEMES FOR DIFFUSION EQUATIONS: INTRODUCTION TO AND REVIEW OF MODERN METHODS , 2014, 1407.1567.
[22] Stefano Giani,et al. Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains , 2016, IEEE CSE 2016.
[23] Paul Houston,et al. Fast Numerical Integration on Polytopic Meshes with Applications to Discontinuous Galerkin Finite Element Methods , 2018, J. Sci. Comput..
[24] Raphaèle Herbin,et al. Small-stencil 3D schemes for diffusive flows in porous media , 2012 .
[25] John W. Barrett,et al. Finite element approximation of a sixth order nonlinear degenerate parabolic equation , 2004, Numerische Mathematik.
[26] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[27] Richard S. Falk,et al. Basic principles of mixed Virtual Element Methods , 2014 .
[28] P. Houston,et al. hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .
[29] Simone Scacchi,et al. A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..
[30] Bo Dong,et al. A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..
[31] Gianmarco Manzini,et al. The Virtual Element Method for Eigenvalue Problems with Potential Terms on Polytopic Meshes , 2018, Applications of Mathematics.
[32] Richard S. Falk,et al. A mixed-Lagrange multiplier finite element method for the polyharmonic equation , 1985 .
[33] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[34] Stefano Berrone,et al. The virtual element method for discrete fracture network simulations , 2014 .
[35] Francesca Gardini,et al. Virtual element method for second-order elliptic eigenvalue problems , 2016, 1610.03675.
[36] L. B. D. Veiga,et al. A virtual element method with arbitrary regularity , 2014 .
[37] Paola F. Antonietti,et al. Mimetic Discretizations of Elliptic Control Problems , 2013, J. Sci. Comput..
[38] Gianmarco Manzini,et al. Hourglass stabilization and the virtual element method , 2015 .
[39] Alain Miranville,et al. Sixth‐order Cahn–Hilliard systems with dynamic boundary conditions , 2015 .
[40] Lourenço Beirão da Veiga,et al. A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..
[41] Ming Wang,et al. Minimal finite element spaces for 2m-th-order partial differential equations in Rn , 2012, Math. Comput..
[42] Dietmar Gallistl,et al. Stable splitting of polyharmonic operators by generalized Stokes systems , 2017, Math. Comput..
[43] Franco Brezzi,et al. Virtual Element Methods for plate bending problems , 2013 .
[44] Gianmarco Manzini,et al. The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..
[45] Thirupathi Gudi,et al. An interior penalty method for a sixth-order elliptic equation , 2011 .
[46] L. Donatella Marini,et al. Virtual Element Method for fourth order problems: L2-estimates , 2016, Comput. Math. Appl..
[47] Paola F. Antonietti,et al. Bubble stabilization of Discontinuous Galerkin methods , 2009 .
[48] Shaochun Chen,et al. The nonconforming virtual element method for plate bending problems , 2016 .
[49] K. Lipnikov,et al. The nonconforming virtual element method , 2014, 1405.3741.
[50] Lars Ludwig,et al. Finite element superconvergence on Shishkin meshes for convection–diffusion problems with corner singularities , 2014 .