Anti-inflammatory therapy for diabetic retinopathy.

Diabetic retinopathy (DR) is one of the most common complications of diabetes. This devastating disease is a leading cause of blindness in people of working age in industrialized countries and affects the daily lives of millions of people. Despite tight glycemic control, blood pressure control and lipid-lowering therapy, the number of DR patients keeps growing and therapeutic approaches are limited. Moreover, there are significant limitations and side effects associated with the current therapies. Thus, there is a great need for development of new strategies for prevention and treatment of DR. Studies have shown that DR has prominent features of chronic, subclinical inflammation. This article focuses on the role of inflammation in DR and summarizes the progress of studies of anti-inflammatory strategies for DR.

[1]  R. Caldwell,et al.  A(₂A) adenosine receptor (A(₂A)AR) as a therapeutic target in diabetic retinopathy. , 2011, The American journal of pathology.

[2]  A. A. El-Asrar Changing paradigms in the treatment of diabetic retinopathy. , 2011 .

[3]  G. Liou,et al.  Retinal Microglial Activation and Inflammation Induced by Amadori-Glycated Albumin in a Rat Model of Diabetes , 2011, Diabetes.

[4]  Ferdinando Giacco,et al.  Oxidative stress and diabetic complications. , 2010, Circulation research.

[5]  W. Hauswirth,et al.  Diabetic eNOS-knockout mice develop accelerated retinopathy. , 2010, Investigative ophthalmology & visual science.

[6]  N. Shelke,et al.  Delivery of SAR 1118 to the retina via ophthalmic drops and its effectiveness in a rat streptozotocin (STZ) model of diabetic retinopathy (DR). , 2010, Investigative ophthalmology & visual science.

[7]  Merlin C. Thomas,et al.  Candesartan Attenuates Diabetic Retinal Vascular Pathology by Restoring Glyoxalase-I Function , 2010, Diabetes.

[8]  E. Agardh,et al.  Vascular Cellular Adhesion Molecule-1 (VCAM-1) Expression in Mice Retinal Vessels Is Affected by Both Hyperglycemia and Hyperlipidemia , 2010, PloS one.

[9]  M. Maia,et al.  Intravitreal Bevacizumab (Avastin(®)) for Diabetic Retinopathy at 24-months: The 2008 Juan Verdaguer-Planas Lecture. , 2010, Current diabetes reviews.

[10]  D. Antonetti,et al.  TNF-α Signals Through PKCζ/NF-κB to Alter the Tight Junction Complex and Increase Retinal Endothelial Cell Permeability , 2010, Diabetes.

[11]  K. Kadota,et al.  Gene expression profile of hyperoxic and hypoxic retinas in a mouse model of oxygen-induced retinopathy. , 2010, Investigative ophthalmology & visual science.

[12]  G. Haegeman,et al.  Targeting inflammation using selective glucocorticoid receptor modulators. , 2010, Current opinion in pharmacology.

[13]  M. Sánchez-Niño,et al.  NF-kappaB in renal inflammation. , 2010, Journal of the American Society of Nephrology : JASN.

[14]  Tien Yin Wong,et al.  Diabetic retinopathy , 2010, The Lancet.

[15]  R. Natarajan,et al.  The role of epigenetics in the pathology of diabetic complications. , 2010, American journal of physiology. Renal physiology.

[16]  R. Kowluru,et al.  Metabolic memory and diabetic retinopathy: role of inflammatory mediators in retinal pericytes. , 2010, Experimental eye research.

[17]  Pilar Martín,et al.  Molecular cues guiding inflammatory responses. , 2010, Cardiovascular research.

[18]  D. Harrison,et al.  Therapeutic targeting of mitochondrial superoxide in hypertension , 2010, Circulation research.

[19]  Dexter L. Lee,et al.  Role of IL-6 in angiotensin II-induced retinal vascular inflammation. , 2010, Investigative ophthalmology & visual science.

[20]  L. Jampol,et al.  Nonsteroidal anti-inflammatory drugs in ophthalmology. , 2010, Survey of ophthalmology.

[21]  M. Romero,et al.  Vascular dysfunction in retinopathy—An emerging role for arginase , 2010, Brain Research Bulletin.

[22]  William E Boden,et al.  The editorialists reply , 2009 .

[23]  Joan W. Miller,et al.  Role of alpha 4 integrin (CD49d) in the pathogenesis of diabetic retinopathy. , 2009, Investigative ophthalmology & visual science.

[24]  B. Baban,et al.  Arginase activity mediates retinal inflammation in endotoxin-induced uveitis. , 2009, The American journal of pathology.

[25]  A. Joussen,et al.  TNF-α mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations , 2009, Molecular vision.

[26]  B. Lilly,et al.  NAD(P)H oxidase-dependent regulation of CCL2 production during retinal inflammation. , 2009, Investigative ophthalmology & visual science.

[27]  K. Birukov,et al.  Cyclic stretch, reactive oxygen species, and vascular remodeling. , 2009, Antioxidants & redox signaling.

[28]  Li-ping Yang,et al.  Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy. , 2009, Investigative ophthalmology & visual science.

[29]  K. Griendling,et al.  NADPH oxidases and angiotensin II receptor signaling , 2009, Molecular and Cellular Endocrinology.

[30]  J. Gutkind,et al.  A Role for a CXCR2/Phosphatidylinositol 3-Kinase γ Signaling Axis in Acute and Chronic Vascular Permeability , 2009, Molecular and Cellular Biology.

[31]  A. El-Remessy,et al.  Diabetic Retinopathy: Current Management and Experimental Therapeutic Targets , 2009, Pharmacotherapy.

[32]  A. Elmarakby,et al.  Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. , 2009, Investigative ophthalmology & visual science.

[33]  R. Varma From a population to patients: the Wisconsin epidemiologic study of diabetic retinopathy. , 2008, Ophthalmology (Rochester, Minn.).

[34]  Ronald Klein,et al.  The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. , 2008, Ophthalmology.

[35]  H. Parving,et al.  Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials , 2008, The Lancet.

[36]  H. Parving,et al.  Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised placebo-controlled trial , 2008, The Lancet.

[37]  Y. Tano,et al.  Comprehensive gene-expression profile in murine oxygen-induced retinopathy , 2008, British Journal of Ophthalmology.

[38]  W. Thoreson,et al.  Peroxiredoxin 6 delivery attenuates TNF-α-and glutamate-induced retinal ganglion cell death by limiting ROS levels and maintaining Ca2+ homeostasis , 2008, Brain Research.

[39]  M. R. Powers,et al.  MCP-1 deficiency delays regression of pathologic retinal neovascularization in a model of ischemic retinopathy. , 2008, Investigative ophthalmology & visual science.

[40]  R. DuBois,et al.  Pro-inflammatory prostaglandins and progression of colorectal cancer. , 2008, Cancer letters.

[41]  J. Oficjalska-Młyńczak,et al.  Assessment of selected adhesion molecule and proinflammatory cytokine levels in the vitreous body of patients with type 2 diabetes — role of the inflammatory–immune process in the pathogenesis of proliferative diabetic retinopathy , 2008, Graefe's Archive for Clinical and Experimental Ophthalmology.

[42]  M. Bartoli,et al.  Role of NADPH oxidase in retinal vascular inflammation. , 2008, Investigative ophthalmology & visual science.

[43]  M. Bartoli,et al.  Role of NADPH oxidase and Stat3 in statin-mediated protection against diabetic retinopathy. , 2008, Investigative ophthalmology & visual science.

[44]  E. Schiffrin,et al.  Role of the renin-angiotensin system in vascular inflammation. , 2008, Trends in pharmacological sciences.

[45]  J. Osredkar,et al.  K469E polymorphism of the intracellular adhesion molecule 1 gene is associated with proliferative diabetic retinopathy in Caucasians with type 2 diabetes , 2008, Clinical & experimental ophthalmology.

[46]  R. Kim,et al.  PROINFLAMMATORY CYTOKINES AND ANGIOGENIC AND ANTI-ANGIOGENIC FACTORS IN VITREOUS OF PATIENTS WITH PROLIFERATIVE DIABETIC RETINOPATHY AND EALES’ DISEASE , 2008, Retina.

[47]  L. Kuo,et al.  C-reactive protein inhibits endothelium-dependent nitric oxide-mediated dilation of retinal arterioles via enhanced superoxide production. , 2008, Investigative ophthalmology & visual science.

[48]  Yosuf El-Shabrawi,et al.  Multiplex bead analysis of vitreous and serum concentrations of inflammatory and proangiogenic factors in diabetic patients , 2008, Molecular vision.

[49]  S. Kaushal,et al.  Intravitreal steroids for macular edema: the past, the present, and the future. , 2008, Survey of ophthalmology.

[50]  S. Ghosh,et al.  Shared Principles in NF-κB Signaling , 2008, Cell.

[51]  Alan W. Stitt,et al.  A new advanced glycation inhibitor, LR-90, prevents experimental diabetic retinopathy in rats , 2008, British Journal of Ophthalmology.

[52]  A. Schmidt,et al.  RAGE and its ligands in retinal disease. , 2007, Current molecular medicine.

[53]  T. Imaizumi,et al.  Olmesartan Blocks Inflammatory Reactions in Endothelial Cells Evoked by Advanced Glycation End Products by Suppressing Generation of Reactive Oxygen Species , 2007, Ophthalmic Research.

[54]  J. Forrester,et al.  Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood-retinal barrier breakdown in diabetic retinopathy. , 2007, Investigative ophthalmology & visual science.

[55]  D. Harrison,et al.  Molecular Mechanisms of Angiotensin II–Mediated Mitochondrial Dysfunction: Linking Mitochondrial Oxidative Damage and Vascular Endothelial Dysfunction , 2007, Circulation research.

[56]  H. E. Marshall,et al.  NOS2 Regulation of NF-κB by S-Nitrosylation of p65* , 2007, Journal of Biological Chemistry.

[57]  G. Trick,et al.  Role of NADPH oxidase and ANG II in diabetes-induced retinal leukostasis. , 2007, American journal of physiology. Regulatory, integrative and comparative physiology.

[58]  J. McGill,et al.  How the diabetic eye loses vision , 2007, Endocrine.

[59]  K. Tsubota,et al.  Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-kappaB pathway. , 2007, Investigative ophthalmology & visual science.

[60]  K. C. Silva,et al.  Prevention of hypertension abrogates early inflammatory events in the retina of diabetic hypertensive rats. , 2007, Experimental eye research.

[61]  David T. Shima,et al.  Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. , 2007, The American journal of pathology.

[62]  Lois E. H. Smith,et al.  Increased dietary intake of ω-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis , 2007, Nature Medicine.

[63]  Raquel Soares,et al.  Angiogenesis and chronic inflammation: cause or consequence? , 2007, Angiogenesis.

[64]  T. Nakazawa,et al.  Pitavastatin prevents NMDA‐induced retinal ganglion cell death by suppressing leukocyte recruitment , 2007, Journal of neurochemistry.

[65]  A. Kwok,et al.  Update on the treatment of diabetic retinopathy. , 2007, Hong Kong medical journal = Xianggang yi xue za zhi.

[66]  Hiroshi Yamamoto,et al.  Inhibition of diabetic leukostasis and blood-retinal barrier breakdown with a soluble form of a receptor for advanced glycation end products. , 2007, Investigative ophthalmology & visual science.

[67]  T. Kern,et al.  Salicylate-Based Anti-Inflammatory Drugs Inhibit the Early Lesion of Diabetic Retinopathy , 2007, Diabetes.

[68]  S. Mohr,et al.  Topical Administration of Nepafenac Inhibits Diabetes-Induced Retinal Microvascular Disease and Underlying Abnormalities of Retinal Metabolism and Physiology , 2007, Diabetes.

[69]  J. B. Lopes de Faria,et al.  Hypertension Increases Retinal Inflammation in Experimental Diabetes: A Possible Mechanism for Aggravation of Diabetic Retinopathy by Hypertension , 2007, Current eye research.

[70]  T. Kern,et al.  Captopril Inhibits Capillary Degeneration in the Early Stages of Diabetic Retinopathy , 2007, Current eye research.

[71]  S. Mohr,et al.  Inhibition of Caspase-1/Interleukin-1β Signaling Prevents Degeneration of Retinal Capillaries in Diabetes and Galactosemia , 2007, Diabetes.

[72]  S. Kadayıfçılar,et al.  Elevated intravitreal interleukin-6 levels in patients with proliferative diabetic retinopathy. , 2006, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[73]  T. Harada,et al.  Role of monocyte chemotactic protein-1 and nuclear factor kappa B in the pathogenesis of proliferative diabetic retinopathy. , 2006, Diabetes research and clinical practice.

[74]  S. Sizmaz,et al.  Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy , 2006, Eye.

[75]  M. Araie,et al.  Effects of peroxisome proliferator-activated receptor gamma and its ligand on blood-retinal barrier in a streptozotocin-induced diabetic model. , 2006, Investigative ophthalmology & visual science.

[76]  Y. Janssen-Heininger,et al.  Redox-Sensitive Kinases of the Nuclear Factor-κB Signaling Pathway , 2006 .

[77]  Simon J. Walker,et al.  NADPH oxidases in cardiovascular health and disease. , 2006, Antioxidants & redox signaling.

[78]  R. Keep,et al.  Protein Kinase Cα-RhoA Cross-talk in CCL2-induced Alterations in Brain Endothelial Permeability* , 2006, Journal of Biological Chemistry.

[79]  U. Kompella,et al.  Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. , 2006, Investigative ophthalmology & visual science.

[80]  T. Oshika,et al.  An Endothelin Type A Receptor Antagonist Reverses Upregulated VEGF and ICAM-1 Levels in Streptozotocin-Induced Diabetic Rat Retina , 2006, Current eye research.

[81]  C. Gerhardinger,et al.  Aspirin at low-intermediate concentrations protects retinal vessels in experimental diabetic retinopathy through non-platelet-mediated effects. , 2005, Diabetes.

[82]  P. Ježek,et al.  Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. , 2005, The international journal of biochemistry & cell biology.

[83]  E. Agrón,et al.  Serum inflammatory markers in diabetic retinopathy. , 2005, Investigative ophthalmology & visual science.

[84]  D. Stern,et al.  Understanding RAGE, the receptor for advanced glycation end products , 2005, Journal of Molecular Medicine.

[85]  N. Rothwell,et al.  Interleukin-1 and neuronal injury , 2005, Nature Reviews Immunology.

[86]  M. Bartoli,et al.  Inhibition of NAD(P)H oxidase activity blocks vascular endothelial growth factor overexpression and neovascularization during ischemic retinopathy. , 2005, The American journal of pathology.

[87]  A. Schmidt,et al.  The RAGE axis in early diabetic retinopathy. , 2005, Investigative ophthalmology & visual science.

[88]  J. Sahel,et al.  Retinal-cell-conditioned medium prevents TNF-alpha-induced apoptosis of purified ganglion cells. , 2005, Investigative ophthalmology & visual science.

[89]  Michael Brownlee,et al.  The pathobiology of diabetic complications: a unifying mechanism. , 2005, Diabetes.

[90]  M. Bartoli,et al.  Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress. , 2005, Current drug targets.

[91]  G. Lutty,et al.  Neutrophils are associated with capillary closure in spontaneously diabetic monkey retinas. , 2005, Diabetes.

[92]  Hiroshi Tamura,et al.  Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. , 2005, Investigative ophthalmology & visual science.

[93]  P. Sfikakis,et al.  Regression of sight-threatening macular edema in type 2 diabetes following treatment with the anti-tumor necrosis factor monoclonal antibody infliximab. , 2005, Diabetes care.

[94]  D. Scott,et al.  Etanercept in arthritis , 2005, International journal of clinical practice.

[95]  C. Szabó,et al.  Poly(ADP-Ribose) Polymerase Is Involved in the Development of Diabetic Retinopathy via Regulation of Nuclear Factor-κB , 2004 .

[96]  R. Kowluru,et al.  Role of interleukin-1beta in the development of retinopathy in rats: effect of antioxidants. , 2004, Investigative ophthalmology & visual science.

[97]  J. Forrester,et al.  Epidemiology of diabetic retinopathy and macular oedema: a systematic review , 2004, Eye.

[98]  Yunpeng Du,et al.  Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. , 2004, American journal of physiology. Regulatory, integrative and comparative physiology.

[99]  U. Kompella,et al.  Inhibition of cyclooxygenase-2, but not cyclooxygenase-1, reduces prostaglandin E2 secretion from diabetic rat retinas. , 2004, European journal of pharmacology.

[100]  Ulrich Schraermeyer,et al.  A central role for inflammation in the pathogenesis of diabetic retinopathy , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[101]  S. Matsumoto,et al.  Evidence for contribution of vascular NAD(P)H oxidase to increased oxidative stress in animal models of diabetes and obesity. , 2004, Free radical biology & medicine.

[102]  Yuichi Kaji,et al.  The role of advanced glycation end products in retinal microvascular leukostasis. , 2003, Investigative ophthalmology & visual science.

[103]  R. Shukla,et al.  Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy. , 2003, Clinical biochemistry.

[104]  H. Yamashita,et al.  Vitreous levels of interleukin-6 and vascular endothelial growth factor are related to diabetic macular edema. , 2003, Ophthalmology.

[105]  H. Utsumi,et al.  A possible target of antioxidative therapy for diabetic vascular complications-vascular NAD(P)H oxidase. , 2003, Current medicinal chemistry.

[106]  Joan W. Miller,et al.  VEGF164-mediated Inflammation Is Required for Pathological, but Not Physiological, Ischemia-induced Retinal Neovascularization , 2003, The Journal of experimental medicine.

[107]  H. Utsumi,et al.  Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. , 2003, Journal of the American Society of Nephrology : JASN.

[108]  P. Tsichlis,et al.  Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Michael H. Miller,et al.  Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection. , 2003, Ophthalmology.

[110]  Karl Matter,et al.  Signalling to and from tight junctions , 2003, Nature Reviews Molecular Cell Biology.

[111]  K. Moutairou,et al.  Antioxidant status and levels of different vitamins determined by high performance liquid chromatography in diabetic subjects with multiple complications. , 2003, General physiology and biophysics.

[112]  D. Chaplin Overview of the immune response. , 2003, The Journal of allergy and clinical immunology.

[113]  Uday B Kompella,et al.  Celecoxib, a selective cyclooxygenase-2 inhibitor, inhibits retinal vascular endothelial growth factor expression and vascular leakage in a streptozotocin-induced diabetic rat model. , 2003, European journal of pharmacology.

[114]  S. Chakrabarti,et al.  Diabetes-induced Activation of Nuclear Transcriptional Factor in the Retina, and its Inhibition by Antioxidants , 2003, Free radical research.

[115]  G. King,et al.  Molecular understanding of hyperglycemia's adverse effects for diabetic complications. , 2002, JAMA.

[116]  S. Yuan Protein kinase signaling in the modulation of microvascular permeability. , 2002, Vascular pharmacology.

[117]  Sucharita Das,et al.  Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. , 2002, Experimental eye research.

[118]  I. Rahman Oxidative stress, transcription factors and chromatin remodelling in lung inflammation. , 2002, Biochemical pharmacology.

[119]  Timothy S Kern,et al.  Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. , 2002, Diabetes.

[120]  K. Turpaev Reactive Oxygen Species and Regulation of Gene Expression , 2002, Biochemistry (Moscow).

[121]  Bernd Kirchhof,et al.  Nonsteroidal anti‐inflammatory drugs prevent early diabetic retinopathy via TNF‐α suppression , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[122]  H. Vlassara,et al.  Diabetes and advanced glycation endproducts , 2002, Journal of internal medicine.

[123]  Aize Kijlstra,et al.  Distribution, markers, and functions of retinal microglia , 2002, Ocular immunology and inflammation.

[124]  B. Spiegelman,et al.  PPARγ: a Nuclear Regulator of Metabolism, Differentiation, and Cell Growth* , 2001, The Journal of Biological Chemistry.

[125]  J. Filmus,et al.  Transforming Growth Factor-α Prevents Detachment-induced Inhibition of c-Src Kinase Activity, Bcl-XLDown-regulation, and Apoptosis of Intestinal Epithelial Cells* , 2001, The Journal of Biological Chemistry.

[126]  Y. Surh,et al.  Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. , 2001, Mutation research.

[127]  J. Jonas,et al.  Intraocular injection of crystalline cortisone as adjunctive treatment of diabetic macular edema. , 2001, American journal of ophthalmology.

[128]  J. Tang,et al.  Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. , 2001, Diabetes.

[129]  T. Kern,et al.  Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin. , 2001, Diabetes.

[130]  L. Kilpatrick,et al.  Roles for βII-Protein Kinase C and RACK1 in Positive and Negative Signaling for Superoxide Anion Generation in Differentiated HL60 Cells* , 2001, The Journal of Biological Chemistry.

[131]  H. E. Marshall,et al.  Inhibition of NF-kappa B by S-nitrosylation. , 2001, Biochemistry.

[132]  J. El Benna,et al.  Protein Kinase C ζ Phosphorylates a Subset of Selective Sites of the NADPH Oxidase Component p47phox and Participates in Formyl Peptide-Mediated Neutrophil Respiratory Burst , 2001, The Journal of Immunology.

[133]  M. Wax,et al.  Increased Production of Tumor Necrosis Factor-α by Glial Cells Exposed to Simulated Ischemia or Elevated Hydrostatic Pressure Induces Apoptosis in Cocultured Retinal Ganglion Cells , 2000, The Journal of Neuroscience.

[134]  K Miyamoto,et al.  Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). , 2000, The American journal of pathology.

[135]  Y. Kaneda,et al.  Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage , 2000, Nature.

[136]  K Miyamoto,et al.  Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. , 2000, Investigative ophthalmology & visual science.

[137]  D. Sorescu,et al.  NAD(P)H oxidase: role in cardiovascular biology and disease. , 2000, Circulation research.

[138]  E. Guenther,et al.  Angiotensin II receptor subtype gene expression and cellular localization in the retina and non‐neuronal ocular tissues of the rat , 1999, The European journal of neuroscience.

[139]  L. Aiello,et al.  Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[140]  S. Bursell,et al.  Can protein kinase C inhibition and vitamin E prevent the development of diabetic vascular complications? , 1999, Diabetes research and clinical practice.

[141]  F. Inagaki,et al.  Tetratricopeptide Repeat (TPR) Motifs of p67 phox Participate in Interaction with the Small GTPase Rac and Activation of the Phagocyte NADPH Oxidase* , 1999, The Journal of Biological Chemistry.

[142]  Guoyao Wu,et al.  Arginine metabolism: nitric oxide and beyond. , 1998, The Biochemical journal.

[143]  T. Gardner,et al.  Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. , 1998, The Journal of clinical investigation.

[144]  Ronald Klein,et al.  Diabetic eye disease , 1997, The Lancet.

[145]  R. Ulevitch,et al.  Activation of p38 in stimulated human neutrophils: phosphorylation of the oxidase component p47phox by p38 and ERK but not by JNK. , 1996, Archives of biochemistry and biophysics.

[146]  M. Corada,et al.  Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions , 1996, The Journal of cell biology.

[147]  M. Tso,et al.  Nitric oxide synthase (NOS) inhibitors ameliorate retinal damage induced by ischemia in rats. , 1996, Research communications in molecular pathology and pharmacology.

[148]  G. Hitman,et al.  An association in non-insulin-dependent diabetes mellitus subjects between susceptibility to retinopathy and tumor necrosis factor polymorphism. , 1996, Human immunology.

[149]  G. A. Limb,et al.  Distribution of TNF alpha and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy. , 1996, The British journal of ophthalmology.

[150]  D. Lefer,et al.  Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. , 1995, The American journal of pathology.

[151]  G. Schmid-Schönbein,et al.  Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. , 1991, The American journal of pathology.

[152]  P. Kubes,et al.  Nitric oxide: an endogenous modulator of leukocyte adhesion. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[153]  Effect of Aspirin Alone and Aspirin Plus Dipyridamole in Early Diabetic Retinopathy: A Multicenter Randomized Controlled Clinical Trial , 1989, Diabetes.

[154]  R. A. Field,et al.  DIABETIC RETINOPATHY AND RHEUMATOID ARTHRITIS. , 1964, Lancet.

[155]  G. Heusch,et al.  TNFα in myocardial ischemia/reperfusion, remodeling and heart failure , 2010, Heart Failure Reviews.

[156]  G. King,et al.  The Impact of Macrophage Insulin Resistance on Advanced Atherosclerotic Plaque Progression [2010;106:58–67] The RAGE Axis: A Fundamental Mechanism Signaling Danger to the Vulnerable Vasculature [2010;106:842–853] The Promise of Cell-Based Therapies for Diabetic Complications: Challenges and Solution , 2010 .

[157]  Joan W. Miller,et al.  Role of 4 Integrin ( CD 49 d ) in the Pathogenesis of Diabetic Retinopathy , 2009 .

[158]  L. Kennedy Topical Administration of Nepafenac Inhibits Diabetes-Induced Retinal Microvascular Disease and Underlying Abnormalities of Retinal Metabolism and Physiology , 2008 .

[159]  L. Liaudet,et al.  Nitric oxide and peroxynitrite in health and disease. , 2007, Physiological reviews.

[160]  A. Hoffmann,et al.  Circuitry of nuclear factor kappaB signaling. , 2006, Immunological reviews.

[161]  H. Chung,et al.  Amelioration of age-related inflammation and oxidative stress by PPARgamma activator: suppression of NF-kappaB by 2,4-thiazolidinedione. , 2006, Experimental gerontology.

[162]  T. Curtis,et al.  Advanced glycation and retinal pathology during diabetes. , 2005, Pharmacological reports : PR.

[163]  Alan W. Stitt,et al.  Inhibition of tumor necrosis factor-alpha improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. , 2005, The American journal of pathology.

[164]  L. Aiello,et al.  Retinopathy in diabetes. , 2004, Diabetes care.

[165]  C. Scholfield,et al.  The role of lipids and protein kinase Cs in the pathogenesis of diabetic retinopathy , 2004, Diabetes/metabolism research and reviews.

[166]  Paul J Thornalley Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. , 2002, International review of neurobiology.

[167]  M. Grant,et al.  Increased H2O2, vascular endothelial growth factor and receptors in the retina of the BBZ/Wor diabetic rat. , 2000, Free radical biology & medicine.

[168]  Marjorie Dunlop,et al.  Increased vasodilatory prostaglandin production in the diabetic rat retinal vasculature. , 1999, Current eye research.

[169]  W. Nauseef,et al.  Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. , 1991, The Journal of clinical investigation.

[170]  Edinburgh Research Explorer Demonstration of renin mRNA, angiotensinogen mRNA, and angiotensin converting enzyme mRNA expression in the human eye: Evidence for an intraocular renin-angiotensin system , 2022 .

[171]  Bernd Kirchhof,et al.  The FASEB Journal express article 10.1096/fj.02-0157fje. Published online November 15, 2002. Suppression of Fas-FasL-induced endothelial cell apoptosis , 2022 .