Controllable and Uncontrollable Poles and Zeros of nD Systems

Abstract. We use the behavioural approach to define and characterize controllable and uncontrollable poles and zeros of multidimensional (nD) linear systems. We show a strong relationship between controllable poles and zeros and properties of the transfer function matrix, and we give characterizations of uncontrollable poles and zeros, in particular demonstrating that these have an input decoupling property.

[1]  Henri Bourlès,et al.  Finite poles and zeros of linear systems: An intrinsic approach , 1997 .

[2]  Eric Rogers,et al.  Controllable and Autonomous nD Linear Systems , 1999, Multidimens. Syst. Signal Process..

[3]  Jan C. Willems,et al.  From time series to linear system - Part I. Finite dimensional linear time invariant systems , 1986, Autom..

[4]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[5]  V. Palamodov,et al.  Linear Differential Operators with Constant Coefficients , 1970 .

[6]  Harish K. Pillai,et al.  A Behavioral Approach to Control of Distributed Systems , 1999 .

[7]  Charles A. Desoer,et al.  Zeros and poles of matrix transfer functions and their dynamical interpretation , 1974 .

[8]  J. Willems On interconnections, control, and feedback , 1997, IEEE Trans. Autom. Control..

[9]  J. WOOD,et al.  A Behavioral Approach to the Pole Structure of One-Dimensional and Multidimensional Linear Systems , 2000, SIAM J. Control. Optim..

[10]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[11]  Eva Zerz,et al.  Notes on the definition of behavioural controllability , 1999 .

[12]  F. Callier,et al.  Dynamic interpretation of poles and transmission zeros for distributed multivariable systems , 1981, IEEE Transactions on Circuits and Systems.

[13]  J. Willems,et al.  Controllability of 2-D systems , 1991 .

[14]  Alban Quadrat,et al.  Algebraic analysis of linear multidimensional control systems , 1999 .

[15]  Ulrich Oberst,et al.  Multidimensional constant linear systems , 1990, EUROCAST.

[16]  Jeffrey Wood,et al.  A formal theory of matrix primeness , 1998, Math. Control. Signals Syst..

[17]  Maria Paula Macedo Rocha,et al.  Structure and representation of 2-D systems , 1990 .

[18]  Jeffrey Wood,et al.  Modules and Behaviours in nD Systems Theory , 2000, Multidimens. Syst. Signal Process..

[19]  S. Zampieri,et al.  State space realization of 2-D finite-dimensional behaviours , 1993 .

[20]  E. Zerz Primeness of multivariate polynomial matrices , 1996 .