Understanding phase stability, microstructure development and biocompatibility in calcium phosphate–titania composites, synthesized from hydroxyapatite and titanium powder mix

[1]  W. Rathje Zur Kenntnis der Phosphate I: Über Hydroxylapatit. , 2007 .

[2]  N. Mostafa Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes , 2005 .

[3]  Tito Busani,et al.  Dielectric and infrared properties of TiO2 films containing anatase and rutile , 2005 .

[4]  P. Cheang,et al.  In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. , 2005, Biomaterials.

[5]  Milenko Markovic,et al.  Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material , 2004, Journal of research of the National Institute of Standards and Technology.

[6]  J. Ong,et al.  Interaction of hydroxyapatite-titanium at elevated temperature in vacuum environment. , 2004, Biomaterials.

[7]  Jingchuan Zhu,et al.  Mechanical and biological properties of hydroxyapatite reinforced with 40 vol. % titanium particles for use as hard tissue replacement , 2004, Journal of materials science. Materials in medicine.

[8]  J. Ong,et al.  Influence of Post-deposition Heating Time and the Presence of Water Vapor on Sputter-coated Calcium Phosphate Crystallinity , 2003, Journal of dental research.

[9]  Y. Dong,et al.  Fabrication and characterization of hydroxyapatite reinforced with 20 vol % Ti particles for use as hard tissue replacement , 2002, Journal of materials science. Materials in medicine.

[10]  Hyoun‐Ee Kim,et al.  Effect of CaF2 on densification and properties of hydroxyapatite-zirconia composites for biomedical applications. , 2002, Biomaterials.

[11]  R. R. Rao,et al.  Synthesis and sintering of hydroxyapatite–zirconia composites , 2002 .

[12]  R. Domingues,et al.  Microstructural and mechanical study of zirconia-hydroxyapatite (ZH) composite ceramics for biomedical applications , 2001 .

[13]  F. Lin,et al.  Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. , 1999, Biomaterials.

[14]  P. Boch,et al.  Preparation of TCP–TiO2 Biocomposites and Study of Their Cytocompatibility , 1998 .

[15]  P. Boch,et al.  Sintering of TCP-TiO2 biocomposites: influence of secondary phases. , 1998, Biomaterials.

[16]  M. Passeggi,et al.  OXIDATION PROCESS IN TITANIUM THIN FILMS , 1997 .

[17]  D. Bernache-Assollant,et al.  Processing, microstructure and toughness of Al2O3 platelet-reinforced hydroxyapatite , 1997 .

[18]  L. Hermansson,et al.  Hydroxyapatite-alumina composites and bone-bonding. , 1995, Biomaterials.

[19]  M. Passeggi,et al.  Oxide stoichiometry in the early stages of titanium oxidation at low pressure , 1993 .

[20]  W. Pies,et al.  I. Barin, O. Knacke, O. Kubaschewski: Thermochemical Properties of Inorganic Substances — Supplement. Springer‐Verlag, Berlin‐Heidelberg‐New York; Verlag Stahleisen, Düsseldorf 1977. 861 Seiten, Preis: DM 170,– , 1978 .

[21]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .

[22]  Ross C. Purdy,et al.  The American Ceramic Society , 1922 .