Numerical Modelling of the Heterogeneous Rock Fracture Process Using Various Test Techniques

SummaryA series of numerical tests including both rock mechanics and fracture mechanics tests are conducted by the rock and tool (R–T2D) interaction code coupled with a heterogeneous masterial model to obtain the physical–mechanical properties and fracture toughness, as well as to simulate the crack initiation and propagation, and the fracture progressive process. The simulated results not only predict relatively accurate physical–mechanical parameters and fracture toughness, but also visually reproduce the fracture progressive process compared with the experimental and theoretical results. The detailed stress distribution and redistribution, crack nucleation and initiation, stable and unstable crack propagation, interaction and coalescence, and corresponding load–displacement curves can be proposed as benchmarks for experimental study and theoretical research on crack propagation. It is concluded that the heterogeneous material model is reasonable and the R–T2D code is stable, repeatable and a valuable numerical tool for research on the rock fracture process.

[1]  S. E. Swartz,et al.  Mixed mode crack propagation and fracture in concrete , 1990 .

[2]  S. D. Hallam,et al.  The failure of brittle solids containing small cracks under compressive stress states , 1986 .

[3]  Ian J. Davies,et al.  Empirical correction factor for the best estimate of Weibull modulus obtained using linear least squares analysis , 2001 .

[4]  L. C. Schmidt,et al.  Rock fracture-toughness determination by the Brazilian test , 1993 .

[5]  I. L. Lim,et al.  Assessment of mixed-mode fracture toughness testing methods for rock , 1994 .

[6]  W. Brown,et al.  Plane strain crack toughness testing of high strength metallic materials. , 1966 .

[7]  Qiuhua Rao,et al.  Pure shear fracture of brittle rock : a theoretical and laboratory study , 1999 .

[8]  C. Atkinson,et al.  Combined mode fracture via the cracked Brazilian disk test , 1982, International Journal of Fracture.

[9]  Anthony R. Ingraffea,et al.  Mixed-Mode Fracture Initiation In Indiana Limestone And Westerly Granite , 1981 .

[10]  Surendra P. Shah,et al.  Observation of mixed mode fracture with center notched disk specimens , 1996 .

[11]  R. J. Fowell,et al.  Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc (CCNBD) specimens , 1995 .

[12]  Xiangchun Tan Modelling of drill string buckling and tool indentation in rock drilling and fragmentation , 1996 .

[13]  R. A. Schmidt,et al.  Fracture-toughness testing of limestone , 1976 .

[14]  E. Landis Micro–macro fracture relationships and acoustic emissions in concrete , 1999 .

[15]  Soo-Ho Chang,et al.  Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens , 2002 .

[16]  H. Peterlik,et al.  The validity of Weibull estimators-experimental verification , 1997 .

[17]  A. Juszczyk,et al.  Analysis of strength data using two- and three-parameter Weibull models , 1998 .

[18]  Sahel N. Abduljauwad,et al.  Effects of confining pressure and temperature on mixed-mode (I–II) fracture toughness of a limestone rock , 2000 .

[19]  Chaoshui Xu,et al.  The Cracked Chevron Notched Brazilian Disc Test Geometrical Considerations For Practical Rock Fracture Toughness Measurement , 1993 .

[20]  S. K. Maiti,et al.  Experimental and finite element study on stable crack growth in three point bending , 1993 .

[21]  S. Nemat-Nasser,et al.  Compression‐induced nonplanar crack extension with application to splitting, exfoliation, and rockburst , 1982 .

[22]  G. Papakaliatakis,et al.  Trajectories of unstably growing cracks in mixed mode I–II loading of marble beams , 1997 .

[23]  L. Mishnaevsky,et al.  Damage and fracture of heterogeneous materials : modelling and application to drilling tool improvement , 1998 .

[24]  Fujiu Ke,et al.  Numerical Simulation of Rock Failure and Earthquake Process on Mesoscopic Scale , 2000 .

[25]  Hongyuan Liu,et al.  Numerical studies on the failure process and associated microseismicity in rock under triaxial compression , 2004 .

[26]  Z. T. Bieniawski,et al.  Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determination of the uniaxial compressive strength of rock materials , 1979 .

[27]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[28]  David A. Cendón,et al.  Modelling the fracture of concrete under mixed loading , 2000 .

[29]  Shaoquan Kou,et al.  Numerical simulation of the fracture process in cutting heterogeneous brittle material , 2002 .

[30]  J. P. Harrison,et al.  Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions , 2002 .

[31]  J. L. Wang,et al.  Experimental study of fracture processes in rock , 1992 .

[32]  Finn Ouchterlony,et al.  Suggested methods for determining the fracture toughness of rock , 1988 .

[33]  C. Tang,et al.  Numerical simulation of progressive rock failure and associated seismicity , 1997 .

[34]  Arun Shukla,et al.  Static and dynamic behavior of concrete and granite in tension with damage , 2001 .

[35]  S. Kou,et al.  Some Basic Problems in Rock Breakage by Blasting and by Indentation , 1995 .

[36]  S. C. Blair,et al.  Analysis of compressive fracture in rock using statistical techniques , 1994 .

[37]  Christopher C. Barton VARIABLES IN FRACTURE ENERGY AND TOUGHNESS TESTING OF ROCK , 1982 .

[38]  S. C. Blair,et al.  Analysis of compressive fracture in rock using statistical techniques: Part I. A non-linear rule-based model , 1998 .

[39]  Erik Schlangen,et al.  Experimental and numerical analysis of micromechanisms of fracture of cement-based composites , 1992 .

[40]  K. T. Chau,et al.  Microcracking and grain size effect in Yuen Long marbles , 1996 .

[41]  B. N. Whittaker,et al.  Rock Fracture Mechanics: Principles, Design and Applications , 1992 .

[42]  Leslie George Tham,et al.  Numerical studies of the influence of microstructure on rock failure in uniaxial compression — Part I: effect of heterogeneity , 2000 .

[43]  Wang Sijing,et al.  AN EXPERIMENTAL INVESTIGATION CONCERNING THE COMPREHENSIVE FRACTURE TOUGHNESS OF SOME BRITTLE ROCKS , 1985 .

[44]  K. Otsuka,et al.  Fracture process zone in concrete tension specimen , 2000 .

[45]  Paul Tapponnier,et al.  Development of stress-induced microcracks in Westerly Granite , 1976 .

[46]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[47]  Ian J. Davies,et al.  Best estimate of Weibull modulus obtained using linear least squares analysis: An improved empirical correction factor , 2004 .

[48]  Ernian Pan,et al.  Fracture Mechanics Analysis of Cracked Discs of Anisotropic Rock Using the Boundary Element Method , 1998 .

[49]  Hongyuan Liu,et al.  Characterization of rock heterogeneity and numerical verification , 2004 .