A Posteriori Error Estimate for Stabilized Low-Order Mixed FEM for the Stokes Equations

This paper is concerned with a stabilized approach to low-order mixed finite element methods for the Stokes equations. We will provide a posteriori error analysis for the method. We present two a posteriori error indicators which will be demonstrated to be globally upper and locally lower bounds for the error of the finite element discretization. Finally two numerical experiments will be carried out to show the efficiency on constructing adaptive meshes.

[1]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[2]  Clark R. Dohrmann,et al.  Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[3]  Ramon Codina,et al.  Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection , 2000 .

[4]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[5]  Randolph E. Bank,et al.  A posteriori error estimates for the Stokes problem , 1991 .

[6]  Rüdiger Verfürth,et al.  A posteriori error estimates for nonlinear problems , 1994 .

[7]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[8]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[9]  Rob P. Stevenson,et al.  An Optimal Adaptive Finite Element Method for the Stokes Problem , 2008, SIAM J. Numer. Anal..

[10]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[11]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[12]  Graham F. Carey,et al.  Penalty approximation of stokes flow , 1982 .

[13]  DAVID KAY,et al.  A Posteriori Error Estimation for Stabilized Mixed Approximations of the Stokes Equations , 1999, SIAM J. Sci. Comput..

[14]  Karel Segeth A review of some a posteriori error estimates for adaptive finite element methods , 2010, Math. Comput. Simul..

[15]  Rüdiger Verfürth,et al.  A posteriori error estimators for the Stokes equations II non-conforming discretizations , 1991 .

[16]  J. Tinsley Oden,et al.  A Posteriori Error Estimators for the Stokes and Oseen Equations , 1997 .

[17]  F. Hecht,et al.  A POSTERIORI ANALYSIS OF A PENALTY METHOD AND APPLICATION TO THE STOKES PROBLEM , 2003 .

[18]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[19]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[20]  R. Verfürth A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations , 1994 .