Electrochemical Activation of TTF-Based Halogen Bond Donors: A Powerful, Selective and Sensitive Analytical Tool for Probing a Weak Interaction in Complex Media

[1]  M. Branca,et al.  Comparative study of non-covalent interactions between cationic N-phenylviologens and halides by electrochemistry and NMR: the halogen bonding effect. , 2017, Faraday discussions.

[2]  F. Mavré,et al.  Electrochemical activation of a tetrathiafulvalene halogen bond donor in solution. , 2016, Physical chemistry chemical physics : PCCP.

[3]  Pierangelo Metrangolo,et al.  The Halogen Bond , 2016, Chemical reviews.

[4]  Jason Y. C. Lim,et al.  Halogen bonding-enhanced electrochemical halide anion sensing by redox-active ferrocene receptors. , 2015, Chemical communications.

[5]  Pierre Kennepohl,et al.  Evidence for Halogen Bond Covalency in Acyclic and Interlocked Halogen-Bonding Receptor Anion Recognition , 2014, Journal of the American Chemical Society.

[6]  Lise‐Marie Chamoreau,et al.  Directed synthesis of a halogen-bonded open porphyrin network , 2014 .

[7]  M. Branca,et al.  Electrochemical controlling and monitoring of halogen bond formation in solution. , 2014, Chemical communications.

[8]  P. Beer,et al.  Halogen- and hydrogen-bonding triazole-functionalised porphyrin-based receptors for anion recognition. , 2013, Dalton transactions.

[9]  Pierangelo Metrangolo,et al.  Definition of the halogen bond (IUPAC Recommendations 2013) , 2013 .

[10]  O. Jeannin,et al.  Toward chiral conductors: combining halogen bonding ability and chirality within a single tetrathiafulvalene molecule , 2013 .

[11]  O. Jeannin,et al.  Expanded halogen-bonded anion organic networks with star-shaped iodoethynyl-substituted molecules: from corrugated 2D hexagonal lattices to pyrite-type 2-fold interpenetrated cubic lattices. , 2013, Journal of the American Chemical Society.

[12]  P. Dubois,et al.  Halogen bonding at work: recent applications in synthetic chemistry and materials science , 2013 .

[13]  M. Chudziński,et al.  Halogen bonding in solution: thermodynamics and applications. , 2013, Chemical Society reviews.

[14]  M. Erdélyi,et al.  Halogen bonding in solution. , 2012, Chemical Society reviews.

[15]  G. Cavallo,et al.  Halogen bonding: a general route in anion recognition and coordination. , 2010, Chemical Society reviews.

[16]  M. Nielsen,et al.  Tetrathiafulvalenes as building blocks in supramolecular chemistry II , 2010 .

[17]  Mohammed G. Sarwar,et al.  Thermodynamics of halogen bonding in solution: substituent, structural, and solvent effects. , 2010, Journal of the American Chemical Society.

[18]  Marc Fourmigué,et al.  Halogen bonding: Recent advances , 2009 .

[19]  C. Amatore,et al.  Direct Monitoring of Ultrafast Redox Commutation at the Nanosecond and Nanometer Scales by Ultrafast Voltammetry: From Molecular Wires to Cation Releasing Systems , 2008 .

[20]  G. Bodenhausen,et al.  Revealing molecular self-assembly and geometry of non-covalent halogen bonding by solid-state NMR spectroscopy. , 2008, Chemical communications.

[21]  P. Beer,et al.  Halogen Bonding in Supramolecular Chemistry. , 2008, Chemical reviews.

[22]  N. Raouafi,et al.  Electrochemically driven release of picomole amounts of calcium ions with temporal and spatial resolution. , 2008, Angewandte Chemie.

[23]  L. Brammer,et al.  Metal fluorides form strong hydrogen bonds and halogen bonds: measuring interaction enthalpies and entropies in solution. , 2008, Journal of the American Chemical Society.

[24]  J. G. Vinter,et al.  Solvent effects on hydrogen bonding. , 2007, Angewandte Chemie.

[25]  Timothy Clark,et al.  Halogen bonding: the σ-hole , 2007 .

[26]  T. Imakubo,et al.  Supramolecular organic conductors based on diiodo-TTFs and spherical halide ion X−(X = Cl, Br) , 2006 .

[27]  F. Barrière,et al.  Use of weakly coordinating anions to develop an integrated approach to the tuning of deltaE(1/2) values by medium effects. , 2006, Journal of the American Chemical Society.

[28]  K. Boubekeur,et al.  Self-assembly of nitroxide radicals via halogen bonding—directional NO⋯I interactions , 2006 .

[29]  M. Kaupp,et al.  13C NMR study of halogen bonding of haloarenes: measurements of solvent effects and theoretical analysis. , 2004, Journal of the American Chemical Society.

[30]  M. Prato,et al.  Cyclic voltammetry and bulk electronic properties of soluble carbon nanotubes. , 2004, Journal of the American Chemical Society.

[31]  P. Metrangolo,et al.  Perfluorocarbon–hydrocarbon self-assembly: Part 16. 19F NMR study of the halogen bonding between halo-perfluorocarbons and heteroatom containing hydrocarbons , 2002 .

[32]  T. Ouimet,et al.  Electrochemically controlled hydrogen bonding. o-Quinones as simple redox-dependent receptors for arylureas. , 2000, The Journal of organic chemistry.

[33]  Anthony C. Legon Präreaktive Komplexe der Dihalogene XY mit Lewis‐Basen B in der Gasphase: eine systematische Studie der Halogen‐Analoga B⋅⋅⋅XY der Wasserstoffbrückenbindungen B⋅⋅⋅HX , 1999 .

[34]  Anthony C. Legon,et al.  Prereactive Complexes of Dihalogens XY with Lewis Bases B in the Gas Phase: A Systematic Case for the Halogen Analogue B⋅⋅⋅XY of the Hydrogen Bond B⋅⋅⋅HX , 1999 .

[35]  Philip A. Gale,et al.  Mechanisms of electrochemical recognition of cations, anions and neutral guest species by redox-active receptor molecules , 1999 .

[36]  A. Kaifer Interplay Between Molecular Recognition and Redox Chemistry , 1999 .

[37]  Frank H. Allen,et al.  The Nature and Geometry of Intermolecular Interactions between Halogens and Oxygen or Nitrogen , 1996 .

[38]  J. Siegel,et al.  Polar Interactions between Stacked π Systems in Fluorinated 1,8-Diarylnaphthalenes: Importance of Quadrupole Moments in Molecular Recognition† , 1995 .

[39]  Franco Cozzi,et al.  Polare Wechselwirkungen zwischen gestapelten π‐Systemen in fluorierten 1,8‐Diarylnaphthalinen: Bedeutung des Quadrupolmoments für die molekulare Erkennung , 1995 .

[40]  A. Jentzsch Applications of halogen bonding in solution , 2015 .

[41]  Hiroshi M. Yamamoto,et al.  Supramolecular insulating networks sheathing conducting nanowires based on organic radical cations. , 2008, ACS nano.