On Quaternions and Octonions

This book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less familiar octonion algebra, concentrating on its remarkable "triality symmetry" after an appropriate study of Moufang loops. The authors also describe the arithmetics of the quaternions and octonions. The book concludes with a new theory of octonion factorization. Topics covered include the geometry of complex numbers, quaternions and 3-dimensional groups, quaternions and 4-dimensional groups, Hurwitz integral quaternions, composition algebras, Moufang loops, octonions and 8-dimensional geometry, integral octonions, and the octonion projective plane.

[1]  John C. Baez,et al.  The Octonions , 2001 .

[2]  Richard K. Guy,et al.  Catwalks, sandsteps, and Pascal pyramids , 2000 .

[3]  J. Kuipers Quaternions and Rotation Sequences , 1998 .

[4]  Daniel Allcock Identifying Models of the Octave Projective Plane , 1997 .

[5]  Hans Peter Rehm,et al.  Prime factorization of integral Cayley octaves , 1993 .

[6]  H. Aslaksen Restricted homogeneous coordinates for the Cayley projective plane , 1991 .

[7]  On a certain class of multiplicative functions , 1991 .

[8]  Martin W. Liebeck,et al.  The classification of finite simple Moufang loops , 1987, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  S. Altmann Rotations, Quaternions, and Double Groups , 1986 .

[10]  H. Brown,et al.  Crystallographic Groups of Four-Dimensional Space , 1978 .

[11]  C. Feaux Divisor matrices in the Cayley ring , 1973 .

[12]  Michael G. Crowe,et al.  A History of Vector Analysis , 1969 .

[13]  A. Pfister Zur Darstellung definiter Funktionen als Summe von Quadraten , 1967 .

[14]  Peter Scherk,et al.  Homographies, quaternions and rotations , 1966 .

[15]  H. Freudenthal Lie groups in the foundations of geometry , 1964 .

[16]  P. Lamont Ideals in cayley’s algebra , 1963 .

[17]  A. Hurwitz Über die Komposition der quadratischen Formen von beliebig vielen Variablen , 1963 .

[18]  H. Freudenthal Oktaven, Ausnahmegruppen und Oktavengeometrie , 1985 .

[19]  T. A. Springer,et al.  The arithmetics of octaves and of the group G2 , 1959 .

[20]  I. Kaplansky Infinite-dimensional quadratic forms admitting composition , 1953 .

[21]  A. C. Hurley Finite rotation groups and crystal classes in four dimensions , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  R. H. Bruck,et al.  The Structure of Alternative Division Rings. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[23]  H. S. M. Coxeter,et al.  Integral Cayley numbers , 1946 .

[24]  A. Adrian Albert,et al.  Quadratic Forms Permitting Composition , 1942 .

[25]  H. F. Blichfeldt The minimum values of positive quadratic forms in six, seven and eight variables , 1935 .

[26]  M. Zorn The Automorphisms of Cayley's Non-Associative Algebra. , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. Moufang Alternativkörper und der Satz vom vollständigen Vierseit (D9) , 1933 .

[28]  H. Seifert,et al.  Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes , 1931 .

[29]  A. S. Ramsey The Mathematical Papers of Sir William Rowan Hamilton , 1931, Nature.

[30]  W. B.,et al.  Algebras and their Arithmetics , 1924, Nature.

[31]  L. E. Dickson,et al.  On Quaternions and Their Generalization and the History of the Eight-Square Theorem. Addenda , 1919 .

[32]  É. Goursat,et al.  Sur les substitutions orthogonales et les divisions régulières de l'espace , 2022 .

[33]  R. Graves,et al.  The Life of Sir William Rowan Hamilton , 1889, Nature.

[34]  G. Zolotareff,et al.  Sur les formes quadratiques positives , 1877 .

[35]  H. Smith On the orders and genera of quadratic forms containing more than three indeterminates , 2022, Proceedings of the Royal Society of London.