Error estimates for generalized barycentric interpolation

We prove the optimal convergence estimate for first-order interpolants used in finite element methods based on three major approaches for generalizing barycentric interpolation functions to convex planar polygonal domains. The Wachspress approach explicitly constructs rational functions, the Sibson approach uses Voronoi diagrams on the vertices of the polygon to define the functions, and the Harmonic approach defines the functions as the solution of a PDE. We show that given certain conditions on the geometry of the polygon, each of these constructions can obtain the optimal convergence estimate. In particular, we show that the well-known maximum interior angle condition required for interpolants over triangles is still required for Wachspress functions but not for Sibson functions.

[1]  Gerald E. Farin,et al.  Surfaces over Dirichlet tessellations , 1990, Comput. Aided Geom. Des..

[2]  Philip D. Plowright,et al.  Convexity , 2019, Optimization for Chemical and Biochemical Engineering.

[3]  P. R. Scott,et al.  INEQUALITIES FOR CONVEX SETS , 2000 .

[4]  P. Jamet Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .

[5]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[6]  Gabriel Acosta,et al.  Error Estimates for Cq1 Isoparametric Elements Satisfying a Weak Angle Condition , 2000, SIAM J. Numer. Anal..

[7]  Michèle Vanmaele,et al.  The interpolation theorem for narrow quadrilateral isoparametric finite elements , 1995 .

[8]  Jirí Kosinka,et al.  On the injectivity of Wachspress and mean value mappings between convex polygons , 2010, Adv. Comput. Math..

[9]  J. Warren On the Uniqueness of Barycentric Coordinates , 2003 .

[10]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[11]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[12]  Chandrajit L. Bajaj,et al.  A generalization for stable mixed finite elements , 2010, SPM '10.

[13]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[14]  Mathieu Desbrun,et al.  Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..

[15]  G. Leoni A First Course in Sobolev Spaces , 2009 .

[16]  Miguel Ángel Martínez,et al.  Overview and recent advances in natural neighbour galerkin methods , 2003 .

[17]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[18]  Rüdiger Verfürth,et al.  A note on polynomial approximation in Sobolev spaces , 1999 .

[19]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[20]  Markus H. Gross,et al.  A Finite Element Method on Convex Polyhedra , 2007, Comput. Graph. Forum.

[21]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  Alireza Tabarraei,et al.  APPLICATION OF POLYGONAL FINITE ELEMENTS IN LINEAR ELASTICITY , 2006 .

[23]  Mark Meyer,et al.  Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.

[24]  Douglas N. Arnold,et al.  Approximation by quadrilateral finite elements , 2000, Math. Comput..

[25]  Michal Křížek,et al.  On semiregular families of triangulations and linear interpolation , 1991 .

[26]  Atsuyuki Okabe,et al.  Existence of equilibrium configurations of competitive firms on an infinite two-dimensional space , 1991 .

[27]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[28]  Serge Nicaise,et al.  On the Interpolation Error Estimates for Q1 Quadrilateral Finite Elements , 2008, SIAM J. Numer. Anal..

[29]  G. Burton Sobolev Spaces , 2013 .

[30]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[31]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[32]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[33]  Markus H. Gross,et al.  Polyhedral Finite Elements Using Harmonic Basis Functions , 2008, Comput. Graph. Forum.

[34]  Shai Dekel,et al.  The Bramble-Hilbert Lemma for Convex Domains , 2004, SIAM J. Math. Anal..

[35]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[36]  S. Christiansen A CONSTRUCTION OF SPACES OF COMPATIBLE DIFFERENTIAL FORMS ON CELLULAR COMPLEXES , 2008 .

[37]  Timo Euler Consistent discretization of maxwell's equations on polyhedral grids , 2007 .

[38]  W. Ames Mathematics in Science and Engineering , 1999 .

[39]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..

[40]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[41]  G. Folland Introduction to Partial Differential Equations , 1976 .

[42]  J. Bramble,et al.  Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .

[43]  Pierre Jamet Estimation of the Interpolation Error for Quadrilateral Finite Elements Which Can Degenerate into Triangles , 1977 .