Steric effects of CO2 binding to transition metal-benzene complexes: A first-principles study

[1]  B. Yakobson,et al.  High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide , 2016, Scientific Reports.

[2]  Jian Zhang,et al.  Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution , 2015, Nature Communications.

[3]  Wenchuan Wang,et al.  A hybrid absorption–adsorption method to efficiently capture carbon , 2014, Nature Communications.

[4]  B. Smit,et al.  Understanding Trends in CO2 Adsorption in Metal-Organic Frameworks with Open-Metal Sites. , 2014, The journal of physical chemistry letters.

[5]  Hong-Cai Zhou,et al.  Recent advances in carbon dioxide capture with metal‐organic frameworks , 2012 .

[6]  Abhoyjit S Bhown,et al.  In silico screening of carbon-capture materials. , 2012, Nature materials.

[7]  Qiang Sun,et al.  Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets. , 2012, The Journal of chemical physics.

[8]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[9]  A. Samanta,et al.  Post-Combustion CO2 Capture Using Solid Sorbents: A Review , 2012 .

[10]  R. Krishna,et al.  Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions , 2012, Nature Communications.

[11]  S. Kim,et al.  Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. , 2011, Physical review letters.

[12]  D. Azevedo,et al.  Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X , 2011 .

[13]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[14]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[15]  J. Ihm,et al.  Ab initio study of dihydrogen binding in metal-decorated polyacetylene for hydrogen storage , 2007 .

[16]  B. Militzer First principles calculations of shock compressed fluid helium. , 2006, Physical review letters.

[17]  I. Guzei,et al.  An improved method for the computation of ligand steric effects based on solid angles. , 2006, Dalton transactions.

[18]  Puru Jena,et al.  Hydrogen storage and the 18-electron rule. , 2006, The Journal of chemical physics.

[19]  S. Ciraci,et al.  Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. , 2005, Physical review letters.

[20]  Yong-Hyun Kim,et al.  Hydrogen storage in novel organometallic buckyballs. , 2005, Physical review letters.

[21]  M. Meyyappan,et al.  CO2 adsorption in single-walled carbon nanotubes , 2003 .

[22]  G. Kubas Metal–dihydrogen and σ-bond coordination: the consummate extension of the Dewar–Chatt–Duncanson model for metal–olefin π bonding , 2001 .

[23]  A. Osuka,et al.  Syntheses, structural characterizations, and optical and electrochemical properties of directly fused diporphyrins. , 2001, Journal of the American Chemical Society.

[24]  A. Osuka,et al.  Completely Fused Diporphyrins and Triporphyrin , 2000 .

[25]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[26]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[27]  K. Pandey Reactivities of carbonyl sulfide (COS), carbon disulfide (CS2) and carbon dioxide(CO2)with transition metal complexes , 1995 .

[28]  J. Calabrese,et al.  Carbon dioxide coordination chemistry. 5. The preparation and structure of the rhodium complex Rh(.eta.1-CO2)(Cl)(diars)2 , 1983 .

[29]  C. A. Tolman,et al.  Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis , 1977 .

[30]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .