Abnormal Current-Voltage Hysteresis Induced by Reverse Bias in Organic-Inorganic Hybrid Perovskite Photovoltaics.

In this study, reverse bias (RB)-induced abnormal hysteresis is investigated in perovskite solar cells (PVSCs) with nickel oxide (NiOx)/methylammonium lead iodide (CH3NH3PbI3) interfaces. Through comprehensive current-voltage (I-V) characterization and bias-dependent external quantum efficiency (EQE) measurements, we demonstrate that this phenomenon is caused by the interfacial ion accumulation intrinsic to CH3NH3PbI3. Subsequently, via systematic analysis we discover that the abnormal I-V behavior is remarkably similar to tunnel diode I-V characteristics and is due to the formation of a transient tunnel junction at NiOx/CH3NH3PbI3 interfaces under RB. The detailed analysis navigating the complexities of I-V behavior in CH3NH3PbI3-based solar cells provided here ultimately illuminates possibilities in modulating ion motion and hysteresis via interfacial engineering in PVSCs. Furthermore, this work shows that RB can alter how CH3NH3PbI3 contributes to the functional nature of devices and provides the first steps toward approaching functional perovskite interfaces in new ways for metrology and analysis of complex transient processes.

[1]  Konrad Wojciechowski,et al.  C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[2]  P. Troshin,et al.  The chemical origin of the p-type and n-type doping effects in the hybrid methylammonium-lead iodide (MAPbI3) perovskite solar cells. , 2015, Chemical communications.

[3]  M. Kawamura,et al.  Effects of Cu doping on nickel oxide thin film prepared by sol–gel solution process , 2014 .

[4]  Hongkyu Kang,et al.  Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating , 2016 .

[5]  Daniel Feuermann,et al.  Photovoltaic hysteresis and its ramifications for concentrator solar cell design and diagnostics , 2005 .

[6]  Ming Li,et al.  Inorganic p-type contact materials for perovskite-based solar cells , 2015 .

[7]  Juan Bisquert,et al.  Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. , 2015, The journal of physical chemistry letters.

[8]  Andreas W. Bett,et al.  Numerical simulation of tunnel diodes and multi-junction solar cells , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[9]  Mohammad Khaja Nazeeruddin,et al.  Methylammonium lead triiodide perovskite solar cells: A new paradigm in photovoltaics , 2015 .

[10]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[11]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[12]  Meng-Che Tsai,et al.  Organometal halide perovskite solar cells: degradation and stability , 2016 .

[13]  John R. Reynolds,et al.  Solution‐Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells , 2013 .

[14]  Steven S. Hegedus,et al.  Thin‐film solar cells: device measurements and analysis , 2004 .

[15]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[16]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[17]  Cheng Li,et al.  An organic–inorganic hybrid perovskite logic gate for better computing , 2015 .

[18]  G. Gigli,et al.  Stark effect in perovskite/TiO2 solar cells: evidence of local interfacial order. , 2014, Nano letters.

[19]  Bin Hu,et al.  Perovskite Solar Cells: Revealing Underlying Processes Involved in Light Soaking Effects and Hysteresis Phenomena in Perovskite Solar Cells (Adv. Energy Mater. 14/2015) , 2015 .

[20]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[21]  J. L. Delgado,et al.  Organic Charge Carriers for Perovskite Solar Cells. , 2015, ChemSusChem.

[22]  Yongli Gao,et al.  Qualifying composition dependent p and n self-doping in CH3NH3PbI3 , 2014 .

[23]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[24]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[25]  J. Bisquert,et al.  Light-Induced Space-Charge Accumulation Zone as Photovoltaic Mechanism in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[26]  Aron Walsh,et al.  The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells , 2015, Nature Communications.

[27]  N. Zhao,et al.  Carrier-Activated Polarization in Organometal Halide Perovskites , 2016 .

[28]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[29]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[30]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[31]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[32]  Cheng Wang,et al.  High-efficiency bulk heterojunction memory devices fabricated using organometallic halide perovskite:poly(N-vinylcarbazole) blend active layers. , 2016, Dalton transactions.

[33]  L. Esaki New Phenomenon in Narrow Germanium p-n Junctions , 1958 .

[34]  Namchul Cho,et al.  High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer , 2015, Advanced materials.

[35]  Dongmei Li,et al.  Interfaces in perovskite solar cells. , 2015, Small.

[36]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[37]  Fujun Zhang,et al.  Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[38]  F. Zeng,et al.  Recent progress in resistive random access memories: Materials, switching mechanisms, and performance , 2014 .

[39]  Prashant V Kamat,et al.  Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good. , 2015, The journal of physical chemistry letters.

[40]  Tsutomu Miyasaka,et al.  Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[41]  Emilio Palomares,et al.  Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiO₂: Separation of Electronic and Chemical Charge Storage, Understanding Two Recombination Lifetimes, and the Evolution of Band Offsets during J-V Hysteresis. , 2015, Journal of the American Chemical Society.

[42]  N. Park,et al.  Strong Photocurrent Amplification in Perovskite Solar Cells with a Porous TiO2 Blocking Layer under Reverse Bias. , 2014, The journal of physical chemistry letters.

[43]  K. Sun,et al.  Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells , 2015 .

[44]  R. Muller,et al.  Polymer and Organic Nonvolatile Memory Devices , 2011 .

[45]  J. C. Scott,et al.  Nonvolatile Memory Elements Based on Organic Materials , 2007 .

[46]  Shenghao Wang,et al.  Temperature-dependent hysteresis effects in perovskite-based solar cells , 2015 .

[47]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[48]  Alex K.-Y. Jen,et al.  Roles of Fullerene‐Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin‐Film Solar Cells , 2015 .

[49]  G. Garcia‐Belmonte,et al.  Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites , 2016 .

[50]  Michael Grätzel,et al.  The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer. , 2015, Angewandte Chemie.

[51]  Chi Jung Kang,et al.  Resistive Switching Behavior in Organic–Inorganic Hybrid CH3NH3PbI3−xClx Perovskite for Resistive Random Access Memory Devices , 2015, Advanced materials.

[52]  Bo Chen,et al.  Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[53]  W. Guter,et al.  $I$–$V$Characterization of Tunnel Diodes and Multijunction Solar Cells , 2006, IEEE Transactions on Electron Devices.

[54]  Trystan Watson,et al.  Observable Hysteresis at Low Temperature in “Hysteresis Free” Organic–Inorganic Lead Halide Perovskite Solar Cells , 2015 .

[55]  Konrad Wojciechowski,et al.  Mapping Electric Field‐Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films , 2015 .

[56]  M. Topič,et al.  Optimal I-V Curve Scan Time of Solar Cells and Modules in Light of Irradiance Level , 2012 .

[57]  Wei Zhang,et al.  Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells , 2015 .

[58]  M. Grätzel,et al.  Working Principles of Perovskite Photodetectors: Analyzing the Interplay Between Photoconductivity and Voltage‐Driven Energy‐Level Alignment , 2015 .

[59]  Rui Liu,et al.  Nickel Oxide Hole Injection/Transport Layers for Efficient Solution-Processed Organic Light-Emitting Diodes , 2014 .

[60]  Mario Caironi,et al.  Ion Migration and the Role of Preconditioning Cycles in the Stabilization of the J–V Characteristics of Inverted Hybrid Perovskite Solar Cells , 2016 .