Contactless temperature measurements under static and dynamic reaction conditions in a single-pass fixed bed reactor for CO2 methanation

[1]  S. Kureti,et al.  Methanation of CO2 on iron based catalysts , 2018 .

[2]  P. Costa,et al.  The influence of nickel content on the performance of hydrotalcite-derived catalysts in CO2 methanation reaction , 2017 .

[3]  P. Pfeifer,et al.  Potential of an Alumina-Supported Ni3Fe Catalyst in the Methanation of CO2: Impact of Alloy Formation on Activity and Stability , 2017 .

[4]  F. López-Isunza,et al.  A simple approach to describe hydrodynamics and its effect on heat and mass transport in an industrial wall-cooled fixed bed catalytic reactor: ODH of ethane on a MoVNbTeO formulation , 2017 .

[5]  Andreas Martin,et al.  Methanation of CO2 on Ni/Al2O3 in a Structured Fixed-Bed Reactor—A Scale-Up Study , 2017 .

[6]  C. Fukuhara,et al.  A novel nickel-based structured catalyst for CO2 methanation: A honeycomb-type Ni/CeO2 catalyst to transform greenhouse gas into useful resources , 2017 .

[7]  Ye Wu,et al.  Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method , 2017 .

[8]  M. Ferraro,et al.  Supported Catalysts for CO2 Methanation: A Review , 2017 .

[9]  Olaf Hinrichsen,et al.  Entwicklung eines optisch zugänglichen Reaktors zur Thermographiemessung in einer Katalysatorschüttung , 2016 .

[10]  Anne-Cécile Roger,et al.  Open cell foam catalysts for CO 2 methanation: Presentation of coating procedures and in situ exothermicity reaction study by infrared thermography , 2016 .

[11]  Zhenhua Li,et al.  CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts , 2016, Frontiers of Chemical Science and Engineering.

[12]  W. A. Bakar,et al.  Effect of ceria and strontia over Ru/Mn/Al2O3 catalyst: catalytic methanation, physicochemical and mechanistic studies , 2016 .

[13]  B. Kraushaar-Czarnetzki,et al.  Heat transport in catalytic sponge packings in the presence of an exothermal reaction: Characterization by 2D modeling of experiments , 2016 .

[14]  O. Hinrichsen,et al.  On the kinetics of the methanation of carbon dioxide on coprecipitated NiAl(O)x , 2016 .

[15]  J. Thöming,et al.  Predicting optimal temperature profiles in single-stage fixed-bed reactors for CO2-methanation , 2015 .

[16]  Arshad Ahmad,et al.  CO2 methanation over heterogeneous catalysts: recent progress and future prospects , 2015 .

[17]  D. Debecker,et al.  CO2 hydrogenation with shape-controlled Pd nanoparticles embedded in mesoporous silica: elucidating stability and selectivity issues , 2015 .

[18]  A. A. Jalil,et al.  Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles , 2014 .

[19]  T. Mlsna,et al.  K-promoted Mo/Co- and Mo/Ni-catalyzed Fischer–Tropsch synthesis of aromatic hydrocarbons with and without a Cu water gas shift catalyst , 2014 .

[20]  B. Kraushaar-Czarnetzki,et al.  Experimental study of heat transport in catalytic sponge packings by monitoring spatial temperature profiles in a cooled-wall reactor , 2014 .

[21]  C. Berrueco,et al.  High-loaded nickel–alumina catalyst for direct CO2 hydrogenation into synthetic natural gas (SNG) , 2013 .

[22]  Andreas Martin,et al.  Heterogen katalysierte Hydrierung von Kohlendioxid zu Methan unter erhöhten Drücken , 2013 .

[23]  R. Schlögl,et al.  Catalytic partial oxidation of methane on platinum investigated by spatial reactor profiles, spatially resolved spectroscopy, and microkinetic modeling , 2013 .

[24]  M. Simeone,et al.  Methane autothermal reforming in a reverse flow reactor on Rh/Al2O3 catalyst , 2012 .

[25]  Antoine Beuls,et al.  Methanation of CO2: Further insight into the mechanism over Rh/gamma-Al2O3 catalyst , 2012 .

[26]  O. Korup,et al.  Measurement and analysis of spatial reactor profiles in high temperature catalysis research , 2011 .

[27]  W. Epling,et al.  Spatially resolved temperature and gas species concentration changes during C3H6 oxidation over a Pt/Al2O3 catalyst following sulfur exposure , 2011 .

[28]  D. Trimm,et al.  The impact of ruthenium, lanthanum and activation conditions on the methanation activity of alumina-supported cobalt catalysts , 2011 .

[29]  Wang Wei,et al.  Methanation of carbon dioxide: an overview , 2011 .

[30]  Anne-Cécile Roger,et al.  CO2 methanation over Ni-Ceria-Zirconia catalysts: effect of preparation and operating conditions , 2011 .

[31]  Patricio Ruiz,et al.  Catalytic production of methane from CO2 and H2 at low temperature: insight on the reaction mechanism , 2010 .

[32]  R. Schlögl,et al.  Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. , 2010, The Review of scientific instruments.

[33]  T. Schildhauer,et al.  Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation , 2010 .

[34]  William S. Epling,et al.  Spatially resolving concentration and temperature gradients during the oxidation of propylene on Pt/Al2O3 , 2009 .

[35]  M. Kuśmierz Kinetic study on carbon dioxide hydrogenation over Ru/γ-Al2O3 catalysts , 2008 .

[36]  Kenneth A. Williams,et al.  Mechanism of H2 and CO formation in the catalytic partial oxidation of CH4 on Rh probed by steady-state spatial profiles and spatially resolved transients , 2007 .

[37]  L. Basini,et al.  Fuel rich catalytic combustion : Principles and technological developments in short contact time (SCT) catalytic processes , 2006 .

[38]  F. Vogel,et al.  Optically accessible channel reactor for the kinetic investigation of hydrocarbon reforming reactions , 2006 .

[39]  G. Bond,et al.  Selective Hydrogenation of Ethyne in Ethene‐Rich Streams on Palladium Catalysts. Part 1. Effect of Changes to the Catalyst During Reaction , 2006 .

[40]  H. Habazaki,et al.  Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni–Zr alloys , 2006 .

[41]  A. Oszkó,et al.  CO2 Hydrogenation on Rh/TiO2 Previously Reduced at Different Temperatures , 2002 .

[42]  Asen I. Anastasov,et al.  A study of the influence of the operating parameters on the temperature of the hot spot in a fixed bed reactor , 2002 .

[43]  Stewart F. Parker,et al.  Poisoning and deactivation of palladium catalysts , 2001 .

[44]  M. Szynkowska,et al.  Characterization of Ru/CeO2-Al2O3 catalysts and their Performance in CO2 Methanation , 2000 .

[45]  H. Arakawa,et al.  Effect of metal loading on CO2 hydrogenation reactivity over Rh/SiO2 catalysts , 2000 .

[46]  M. Okada,et al.  Isolation of Oxygen Formed during Catalytic Reduction of Carbon Dioxide Using a Solid Electrolyte Membrane , 1999 .

[47]  Di Li,et al.  Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation , 1998 .

[48]  S. Galvagno,et al.  Influence of the support on CO2 methanation over Ru catalysts: an FT-IR study , 1998 .

[49]  K. Tomishige,et al.  Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2 , 1997 .

[50]  A. Renken,et al.  Periodic operation applied to the kinetic study of CO2 methanation , 1994 .

[51]  Evangelos Tsotsas,et al.  Heat transfer in packed beds with fluid flow: remarks on the meaning and the calculation of a heat transfer coefficient at the wall , 1990 .

[52]  M. Ravindram,et al.  A kinetic study of the methanation of CO2 over Ni−Al2O3 catalyst , 1988 .

[53]  R. Sheldon Catalytic Oxidation and Fine Chemicals , 1995 .

[54]  Y. Qian,et al.  Methanation studies: Characterization of some iron catalysts by X-ray diffraction and curie point determinations , 1985 .

[55]  C. H. Bartholomew,et al.  Hydrogenation of CO2 on group VIII metals: IV. Specific activities and selectivities of silica-supported Co, Fe, and Ru , 1984 .

[56]  C. H. Bartholomew,et al.  Sulfur Poisoning of Metals , 1982 .

[57]  J. Falconer,et al.  Carbon dioxide adsorption and methanation on ruthenium , 1981 .

[58]  H. Wise,et al.  Thermodynamics of sulfur chemisorption on metals. I. Alumina‐supported nickel , 1980 .

[59]  C. H. Bartholomew,et al.  Chemisorption of hydrogen sulfide on nickel and ruthenium catalysts: I. Desorption isotherms , 1978 .

[60]  G. Froment,et al.  Parametric sensitivity and runaway in fixed bed catalytic reactors , 1970 .