When Long Memory Meets the Kalman Filter: A Comparative Study

The finite sample properties of the state space methods applied to long memory time series are analyzed through Monte Carlo simulations. The state space setup allows to introduce a novel modeling approach in the long memory framework, which directly tackles measurement errors and random level shifts. Missing values and several alternative sources of misspecification are also considered. It emerges that the state space methodology provides a valuable alternative for the estimation of the long memory models, under different data generating processes, which are common in financial and economic series. Two empirical applications highlight the practical usefulness of the proposed state space methods.

[1]  Chih-Chiang Hsu Long memory or structural changes: An empirical examination on inflation rates , 2005 .

[2]  Uwe Hassler,et al.  Long Memory in Inflation Rates: International Evidence , 1995 .

[3]  A. Philippe,et al.  Generators of long-range dependent processes: A survey , 2003 .

[4]  Wilfredo Palma,et al.  Miscellanea. Statistical analysis of incomplete long-range dependent data , 1999 .

[5]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[6]  P. Zaffaroni Contemporaneous aggregation of linear dynamic models in large economies , 2004 .

[7]  Fallaw Sowell Maximum likelihood estimation of stationary univariate fractionally integrated time series models , 1992 .

[8]  Peter C. B. Phillips,et al.  Exact Local Whittle Estimation of Fractional Integration , 2002 .

[9]  Wilfredo Palma,et al.  State space modeling of long-memory processes , 1998 .

[10]  Melvin J. Hinich,et al.  Time Series Analysis by State Space Methods , 2001 .

[11]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[12]  J. Angus Forecasting, Structural Time Series and the Kalman Filter , 1992 .

[13]  P. Perron,et al.  Computation and Analysis of Multiple Structural-Change Models , 1998 .

[14]  Pierre Perron,et al.  Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices , 2008 .

[15]  Zhongjun Qu,et al.  A Test Against Spurious Long Memory , 2009 .

[16]  R. Shumway,et al.  ESTIMATION OF TREND IN STATE-SPACE MODELS: ASYMPTOTIC MEAN SQUARE ERROR AND RATE OF CONVERGENCE , 2009, 0911.3469.

[17]  Jan Beran,et al.  Maximum Likelihood Estimation of the Differencing Parameter for Invertible Short and Long Memory Autoregressive Integrated Moving Average Models , 1995 .

[18]  Katsumi Shimotsu,et al.  Simple (but effective) tests of long memory versus structural breaks , 2006 .

[19]  Jennifer Brown,et al.  Not all estimators are born equal: The empirical properties of some estimators of long memory , 2013, Math. Comput. Simul..

[20]  P. Robinson Long memory time series , 2003 .

[21]  C. Hurvich,et al.  ON THE LOG PERIODOGRAM REGRESSION ESTIMATOR OF THE MEMORY PARAMETER IN LONG MEMORY STOCHASTIC VOLATILITY MODELS , 2001, Econometric Theory.

[22]  J. Arteche Gaussian Semiparametric Estimation in Long Memory in Stochastic Volatility and Signal Plus Noise Models , 2004 .

[23]  Niels Haldrup,et al.  Estimation of Fractional Integration in the Presence of Data Noise , 2003, Comput. Stat. Data Anal..

[24]  C. Granger Long memory relationships and the aggregation of dynamic models , 1980 .

[25]  J. Stock,et al.  Why Has U.S. Inflation Become Harder to Forecast , 2007 .

[26]  F. Comte,et al.  Long memory in continuous‐time stochastic volatility models , 1998 .

[27]  Luisa Bisaglia,et al.  An Empirical Strategy to Detect Spurious Effects in Long Memory and Occasional-Break Processes , 2008, Commun. Stat. Simul. Comput..

[28]  Katsumi Shimotsu,et al.  EXACT LOCAL WHITTLE ESTIMATION OF FRACTIONAL INTEGRATION WITH UNKNOWN MEAN AND TIME TREND , 2009, Econometric Theory.

[29]  Silvano Bordignon,et al.  Long Memory and Nonlinearities in Realized Volatility: A Markov Switching Approach , 2010, Comput. Stat. Data Anal..

[30]  J. Dolado,et al.  What is What?: A Simple Time-Domain Test of Long-Memory vs. Structural Breaks , 2005 .

[31]  Josu Arteche Semiparametric estimation in perturbed long memory series , 2006, Comput. Stat. Data Anal..

[32]  F. Diebold,et al.  The Distribution of Exchange Rate Volatility , 1999 .

[33]  Richard T. Baillie,et al.  Analysing inflation by the fractionally integrated ARFIMA–GARCH model , 1996 .

[34]  Clive W. J. Granger,et al.  An introduction to long-memory time series models and fractional differencing , 2001 .

[35]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[36]  Philippe Soulier,et al.  Estimating Long Memory in Volatility , 2002 .

[37]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[38]  Paolo Santucci de Magistris,et al.  A No Arbitrage Fractional Cointegration Analysis of the Range Based Volatility , 2009 .

[39]  C. Velasco Gaussian Semiparametric Estimation of Non‐stationary Time Series , 1999 .

[40]  C. Granger,et al.  Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns , 2004 .

[41]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[42]  M. Taqqu,et al.  Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .

[43]  D. Guégan,et al.  A comparison of techniques of estimation in long-memory processes , 1998 .

[44]  Jennifer Brown,et al.  The Empirical Properties of Some Popular Estimators of Long Memory Processes , 2008 .

[45]  P. Phillips,et al.  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jae.760 UNDERSTANDING THE FISHER EQUATION , 2022 .

[46]  Wilfredo Palma,et al.  Long-memory time series , 2007 .

[47]  S. Laurent,et al.  Modelling Daily Value-at-Risk Using Realized Volatility and Arch Type Models , 2001 .

[48]  É. Moulines,et al.  Log-Periodogram Regression Of Time Series With Long Range Dependence , 1999 .

[49]  F. Diebold,et al.  Real Exchange Rates under the Gold Standard , 1991, Journal of Political Economy.

[50]  Morten Ørregaard Nielsen,et al.  Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration , 2005 .

[51]  F. Breidt,et al.  The detection and estimation of long memory in stochastic volatility , 1998 .

[52]  Andrew Harvey,et al.  Readings in Unobserved Components Models , 2005 .

[53]  Pilar Loreto Iglesias,et al.  Data analysis using regression models with missing observations and long-memory: an application study , 2006, Comput. Stat. Data Anal..

[54]  Peter C. B. Phillips,et al.  Nonlinear Log-Periodogram Regression for Perturbed Fractional Processes , 2002 .

[55]  Wilfredo Palma,et al.  Estimation of Long-Memory Time Series Models: a Survey of Different Likelihood-Based Methods , 2006 .

[56]  Clifford M. Hurvich,et al.  The Local Whittle Estimator of Long Memory Stochastic Volatility , 2001 .

[57]  W. Palma,et al.  Asymptotics for linear predictors of strongly dependent time series , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[58]  R. Dahlhaus Efficient parameter estimation for self-similar processes , 1989, math/0607078.

[59]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[60]  Laura Mayoral The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach , 2005 .

[61]  R. J. Bhansali,et al.  On unified model selection for stationary and nonstationary short- and long-memory autoregressive processes , 1998 .

[62]  Fred C. Schweppe,et al.  Evaluation of likelihood functions for Gaussian signals , 1965, IEEE Trans. Inf. Theory.

[63]  P. Perron,et al.  Modeling and forecasting stock return volatility using a random level shift model , 2010 .

[64]  Jiti Gao,et al.  Econometric estimation in long-range dependent volatility models: Theory and practice , 2008 .

[65]  Jeffrey R. Russell,et al.  True or Spurious Long Memory? A New Test , 2008 .

[66]  Richard T. Baillie,et al.  Small sample bias in conditional sum-of-squares estimators of fractionally integrated ARMA models , 1993 .

[67]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[68]  David R. Brillinger,et al.  Time Series , 2018, Randomization, Bootstrap and Monte Carlo Methods in Biology.

[69]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[70]  G. Calvo Staggered prices in a utility-maximizing framework , 1983 .

[71]  Robinson Kruse,et al.  Testing for a Break in Persistence Under Long-Range Dependencies , 2007 .