Withdrawn as Duplicate: Survey geometry and the internal consistency of recent cosmic shear measurements

We explore the impact of an update to the typical approximation for the shape noise term in the analytic covariance matrix for cosmic shear experiments that assumes the absence of survey boundary and mask effects. We present an exact expression for the number of galaxy pairs in this term based on the survey mask, which leads to more than a factor of three increase in the shape noise on the largest measured scales for the Kilo-Degree Survey (KiDS-450) real-space cosmic shear data. We compare the result of this analytic expression to several alternative methods for measuring the shape noise from the data and find excellent agreement. This update to the covariance resolves any internal model tension evidenced by the previously large cosmological best-fitting chi(2) for the KiDS-450 cosmic shear data. The best-fitting chi(2) is reduced from 161 to 121 for 118 degrees of freedom. We also apply a correction to how the multiplicative shear calibration uncertainty is included in the covariance. This change shifts the inferred amplitude of the correlation function to higher values. We find that this improves agreement of the KiDS-450 cosmic shear results with Dark Energy Survey Year 1 and Planck results.

[1]  M. P. Hobson,et al.  Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.

[2]  J. Frieman,et al.  Density split statistics: Cosmological constraints from counts and lensing in cells in DES Y1 and SDSS data , 2017, Physical Review D.

[3]  A. Leauthaud,et al.  Weak lensing shear calibration with simulations of the HSC survey , 2017, Monthly Notices of the Royal Astronomical Society.

[4]  B. Yanny,et al.  Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology , 2017, 1708.01531.

[5]  C. B. D'Andrea,et al.  Dark Energy Survey Year 1 results: weak lensing shape catalogues , 2017, Monthly Notices of the Royal Astronomical Society.

[6]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[7]  R. Nichol,et al.  Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.

[8]  Karl Glazebrook,et al.  KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering , 2017, 1707.06627.

[9]  Satoshi Miyazaki,et al.  The first-year shear catalog of the Subaru Hyper Suprime-Cam Subaru Strategic Program Survey , 2017, 1705.06745.

[10]  S. More,et al.  Constraints on the Mass–Richness Relation from the Abundance and Weak Lensing of SDSS Clusters , 2017, 1707.01907.

[11]  G. Efstathiou,et al.  Statistical inconsistencies in the KiDS-450 data set , 2017, 1707.00483.

[12]  C. B. D'Andrea,et al.  Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses , 2017, 1706.09359.

[13]  Erin S. Sheldon,et al.  Practical Weak-lensing Shear Measurement with Metacalibration , 2017, 1702.02601.

[14]  Rachel Mandelbaum,et al.  Metacalibration: Direct Self-Calibration of Biases in Shear Measurement , 2017, 1702.02600.

[15]  A. Slosar,et al.  Galaxy–galaxy lensing estimators and their covariance properties , 2016, 1611.00752.

[16]  H. Hoekstra,et al.  Calibration of weak-lensing shear in the Kilo-Degree Survey , 2016, 1606.05337.

[17]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[18]  Shahab Joudaki,et al.  CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics , 2016, 1601.05786.

[19]  Tim Eifler,et al.  COSMOLIKE - cosmological likelihood analyses for photometric galaxy surveys , 2016, 1601.05779.

[20]  J. Frieman,et al.  Cosmic voids and void lensing in the Dark Energy Survey Science Verification data , 2016, 1605.03982.

[21]  C. Heymans,et al.  Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces , 2016, 1602.02154.

[22]  Michael D. Schneider,et al.  COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. II. FULL COSMOLOGICAL PARAMETER CONSTRAINTS FROM TOMOGRAPHY , 2015, 1510.03962.

[23]  Edwin Valentijn,et al.  Gravitational lensing analysis of the Kilo-Degree Survey , 2015, 1507.00738.

[24]  Massimo Brescia,et al.  The first and second data releases of the Kilo-Degree Survey , 2015, 1507.00742.

[25]  Shahab Joudaki,et al.  An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models , 2015, 1505.07833.

[26]  Alina Kiessling,et al.  Galaxy Alignments: An Overview , 2015, 1504.05456.

[27]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[28]  Saba Sehrish,et al.  CosmoSIS: Modular cosmological parameter estimation , 2014, Astron. Comput..

[29]  Mustapha Ishak,et al.  The Intrinsic Alignment of Galaxies and its Impact on Weak Gravitational Lensing in an Era of Precision Cosmology , 2014, 1407.6990.

[30]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[31]  M. Takada,et al.  Power spectrum super-sample covariance , 2013, 1302.6994.

[32]  H. Hoekstra,et al.  Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.

[33]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[34]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[35]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[36]  E. A. Valentijn,et al.  The Astro-WISE datacentric information system , 2012, 1208.0447.

[37]  Anthony Challinor,et al.  CMB power spectrum parameter degeneracies in the era of precision cosmology , 2012, 1201.3654.

[38]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[39]  P. Schneider,et al.  Analysis of two-point statistics of cosmic shear III. Covariances of shear measures made easy , 2007, 0708.0387.

[40]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[41]  P. Schneider,et al.  Analysis of two-point statistics of cosmic shear. II. Optimizing the survey geometry , 2003, astro-ph/0308119.

[42]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[43]  Bonn,et al.  Analysis of two-point statistics of cosmic shear - I. Estimators and covariances , 2002, astro-ph/0206182.

[44]  M.P.Hobson,et al.  Analytic marginalization over CMB calibration and beam uncertainty , 2001, astro-ph/0112114.

[45]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[46]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.