Syntrophic Growth on Formate: a New Microbial Niche in Anoxic Environments

ABSTRACT Anaerobic syntrophic associations of fermentative bacteria and methanogenic archaea operate at the thermodynamic limits of life. The interspecies transfer of electrons from formate or hydrogen as a substrate for the methanogens is key. Contrary requirements of syntrophs and methanogens for growth-sustaining product and substrate concentrations keep the formate and hydrogen concentrations low and within a narrow range. Since formate is a direct substrate for methanogens, a niche for microorganisms that grow by the conversion of formate to hydrogen plus bicarbonate—or vice versa—may seem unlikely. Here we report experimental evidence for growth on formate by syntrophic communities of (i) Moorella sp. strain AMP in coculture with a thermophilic hydrogen-consuming Methanothermobacter species and of (ii) Desulfovibrio sp. strain G11 in coculture with a mesophilic hydrogen consumer, Methanobrevibacter arboriphilus AZ. In pure culture, neither Moorella sp. strain AMP, nor Desulfovibrio sp. strain G11, nor the methanogens grow on formate alone. These results imply the existence of a previously unrecognized microbial niche in anoxic environments.

[1]  K. Nealson,et al.  Reproduction and metabolism at − 10°C of bacteria isolated from Siberian permafrost , 2003 .

[2]  M. McInerney,et al.  Anaerobic microbial metabolism can proceed close to thermodynamic limits , 2002, Nature.

[3]  D. Boone,et al.  Diffusion of the Interspecies Electron Carriers H2 and Formate in Methanogenic Ecosystems and Its Implications in the Measurement of Km for H2 or Formate Uptake , 1989, Applied and environmental microbiology.

[4]  R. Hedderich Energy-Converting [NiFe] Hydrogenases from Archaea and Extremophiles: Ancestors of Complex I , 2004, Journal of bioenergetics and biomembranes.

[5]  Christopher P. McKay,et al.  Mars-Like Soils in the Atacama Desert, Chile, and the Dry Limit of Microbial Life , 2003, Science.

[6]  F. Widdel Growth of Methanogenic Bacteria in Pure Culture with 2-Propanol and Other Alcohols as Hydrogen Donors , 1986, Applied and environmental microbiology.

[7]  A. Stams,et al.  Effect of cobalt on the anaerobic thermophilic conversion of methanol , 2004, Biotechnology and bioengineering.

[8]  J. Kasting,et al.  Life and the Evolution of Earth's Atmosphere , 2002, Science.

[9]  J. Amend,et al.  Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. , 2001, FEMS microbiology reviews.

[10]  R. S. Wolfe,et al.  Methanobacillus omelianskii, a symbiotic association of two species of bacteria , 2004, Archiv für Mikrobiologie.

[11]  A. K. Rowan,et al.  Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs , 2008, Nature.

[12]  E. J. Carroll,et al.  Formate dissimilation and methane production in bovine rumen contents. , 1955, Archives of biochemistry and biophysics.

[13]  A. Zehnder Biology of anaerobic microorganisms , 1988 .

[14]  A. Henstra CO metabolism of carboxydothermus hydrogenoformans and archaeoglobus fulgidus , 2006 .

[15]  T. Lueders,et al.  Archaeal Population Dynamics during Sequential Reduction Processes in Rice Field Soil , 2000, Applied and Environmental Microbiology.

[16]  R. Thauer,et al.  Energy conservation in chemotrophic anaerobic bacteria , 1977, Bacteriological reviews.

[17]  Stephen H. Zinder,et al.  Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture , 1984, Archives of Microbiology.

[18]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[19]  D. Lovley,et al.  Extending the Upper Temperature Limit for Life , 2003, Science.

[20]  J. Banfield,et al.  Geomicrobiology: How Molecular-Scale Interactions Underpin Biogeochemical Systems , 2002, Science.

[21]  A. Stams,et al.  Interspecies electron transfer in methanogenic propionate degrading consortia. , 2004, Water research.

[22]  K. Hanselmann,et al.  Microbial energetics applied to waste repositories , 1991, Experientia.

[23]  A. Stams,et al.  Novel Physiological Features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens , 2004, Applied and Environmental Microbiology.

[24]  W. Whitman,et al.  Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea , 2008, Annals of the New York Academy of Sciences.

[25]  I-Min A. Chen,et al.  The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions , 2007, Nucleic Acids Res..

[26]  J. Amend,et al.  A "follow the energy" approach for astrobiology. , 2007, Astrobiology.

[27]  Rekha Seshadri,et al.  The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough , 2004, Nature Biotechnology.

[28]  Kenji Kida,et al.  Effect of Dilution Rate on Metabolic Pathway Shift between Aceticlastic and Nonaceticlastic Methanogenesis in Chemostat Cultivation , 2004, Applied and Environmental Microbiology.

[29]  J. Gregory Zeikus,et al.  Control of Interspecies Electron Flow during Anaerobic Digestion: Significance of Formate Transfer versus Hydrogen Transfer during Syntrophic Methanogenesis in Flocs , 1988, Applied and environmental microbiology.

[30]  D. Postma,et al.  Methanogenesis in a shallow sandy aquifer, Rømø, Denmark , 2001 .

[31]  Harold L Drake,et al.  Physiology of the thermophilic acetogen Moorella thermoacetica. , 2004, Research in microbiology.

[32]  R. Conrad,et al.  Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). , 2001, Environmental microbiology.

[33]  N. Pace,et al.  Geobiology of a microbial endolithic community in the Yellowstone geothermal environment , 2005, Nature.

[34]  J. Banfield,et al.  An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. , 2000, Science.

[35]  J. Zeikus,et al.  Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria , 1991, Applied and environmental microbiology.

[36]  K. Bagramyan,et al.  Structural and Functional Features of Formate Hydrogen Lyase, an Enzyme of Mixed-Acid Fermentation from Escherichia coli , 2003, Biochemistry (Moscow).

[37]  Paul Richardson,et al.  The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). , 2008, Environmental microbiology.

[38]  K. Nealson The limits of life on Earth and searching for life on Mars. , 1997, Journal of geophysical research.

[39]  A. Spormann,et al.  Hydrogen Metabolism in Shewanella oneidensis MR-1 , 2006, Applied and Environmental Microbiology.

[40]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .

[41]  A. Brauman,et al.  Methane Production from Formate by Syntrophic Association of Methanobacterium bryantii and Desulfovibrio vulgaris JJ , 1986, Applied and environmental microbiology.

[42]  B. Jiang The effect of trace elements on the metabolism of methanogenic consortia , 2006 .