Model-Assisted Uniformly Honest Inference for Optimal Treatment Regimes in High Dimension

This paper develops new tools to quantify uncertainty in optimal decision making and to gain insight into which variables one should collect information about given the potential cost of measuring ...

[1]  Cun-Hui Zhang,et al.  Confidence intervals for low dimensional parameters in high dimensional linear models , 2011, 1110.2563.

[2]  Runze Li,et al.  ESTIMATION AND TESTING FOR PARTIALLY LINEAR SINGLE-INDEX MODELS. , 2010, Annals of statistics.

[3]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[4]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[5]  Yufeng Liu,et al.  D-learning to estimate optimal individual treatment rules , 2018 .

[6]  Erica E M Moodie,et al.  Estimating Optimal Dynamic Regimes: Correcting Bias under the Null , 2009, Scandinavian journal of statistics, theory and applications.

[7]  Jianqing Fan,et al.  Generalized Partially Linear Single-Index Models , 1997 .

[8]  M. Hanefeld,et al.  A long‐term comparison of pioglitazone and gliclazide in patients with Type 2 diabetes mellitus: a randomized, double‐blind, parallel‐group comparison trial , 2005, Diabetic medicine : a journal of the British Diabetic Association.

[9]  Yinchu Zhu,et al.  Linear Hypothesis Testing in Dense High-Dimensional Linear Models , 2016, Journal of the American Statistical Association.

[10]  S. Geer,et al.  On asymptotically optimal confidence regions and tests for high-dimensional models , 2013, 1303.0518.

[11]  Han Liu,et al.  A General Theory of Hypothesis Tests and Confidence Regions for Sparse High Dimensional Models , 2014, 1412.8765.

[12]  K. Parhofer Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia , 2015, Diabetes & metabolism journal.

[13]  Lu Tian,et al.  A Simple Method for Detecting Interactions between a Treatment and a Large Number of Covariates , 2012, 1212.2995.

[14]  Peter Dayan,et al.  Technical Note: Q-Learning , 2004, Machine Learning.

[15]  S. Murphy,et al.  PERFORMANCE GUARANTEES FOR INDIVIDUALIZED TREATMENT RULES. , 2011, Annals of statistics.

[16]  Runze Li,et al.  Statistical Inference for High-Dimensional Models via Recursive Online-Score Estimation , 2020, Journal of the American Statistical Association.

[17]  Lixing Zhu,et al.  Empirical likelihood confidence regions in a partially linear single‐index model , 2006 .

[18]  Po-Ling Loh,et al.  Regularized M-estimators with nonconvexity: statistical and algorithmic theory for local optima , 2013, J. Mach. Learn. Res..

[19]  A. Montanari,et al.  The landscape of empirical risk for nonconvex losses , 2016, The Annals of Statistics.

[20]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[21]  Donglin Zeng,et al.  Estimating Individualized Treatment Rules Using Outcome Weighted Learning , 2012, Journal of the American Statistical Association.

[22]  Bin Nan,et al.  A SIEVE M-THEOREM FOR BUNDLED PARAMETERS IN SEMIPARAMETRIC MODELS, WITH APPLICATION TO THE EFFICIENT ESTIMATION IN A LINEAR MODEL FOR CENSORED DATA. , 2011, Annals of statistics.

[23]  Benedikt M. Pötscher Confidence Sets Based on Sparse Estimators Are Necessarily Large , 2007 .

[24]  Rui Song,et al.  Quantile-Optimal Treatment Regimes , 2018, Journal of the American Statistical Association.

[25]  M. J. van der Laan,et al.  STATISTICAL INFERENCE FOR THE MEAN OUTCOME UNDER A POSSIBLY NON-UNIQUE OPTIMAL TREATMENT STRATEGY. , 2016, Annals of statistics.

[26]  Jun S. Liu,et al.  Sparse Sliced Inverse Regression via Lasso , 2016, Journal of the American Statistical Association.

[27]  Eric B. Laber,et al.  Dynamic treatment regimes: Technical challenges and applications , 2014 .

[28]  Erica E. M. Moodie,et al.  Statistical Methods for Dynamic Treatment Regimes: Reinforcement Learning, Causal Inference, and Personalized Medicine , 2013 .

[29]  Adel Javanmard,et al.  Confidence intervals and hypothesis testing for high-dimensional regression , 2013, J. Mach. Learn. Res..

[30]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[31]  Eric B. Laber,et al.  Inference about the expected performance of a data-driven dynamic treatment regime , 2014, Clinical trials.

[32]  Krishnakumar Balasubramanian,et al.  High-dimensional Non-Gaussian Single Index Models via Thresholded Score Function Estimation , 2017, ICML.

[33]  Tianxi Cai,et al.  L1-Regularized Least Squares for Support Recovery of High Dimensional Single Index Models with Gaussian Designs , 2015, J. Mach. Learn. Res..

[34]  Rui Song,et al.  Proper Inference for Value Function in High-Dimensional Q-Learning for Dynamic Treatment Regimes , 2018, Journal of the American Statistical Association.

[35]  Ker-Chau Li,et al.  Slicing Regression: A Link-Free Regression Method , 1991 .

[36]  S. Murphy,et al.  Optimal dynamic treatment regimes , 2003 .

[37]  J. Robins,et al.  Marginal Structural Models and Causal Inference in Epidemiology , 2000, Epidemiology.

[38]  Erica E. M. Moodie,et al.  Statistical Reinforcement Learning , 2013 .

[39]  Eric B. Laber,et al.  A Robust Method for Estimating Optimal Treatment Regimes , 2012, Biometrics.

[40]  Liping Zhu,et al.  Doubly robust and efficient estimators for heteroscedastic partially linear single‐index models allowing high dimensional covariates , 2013, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[41]  Donglin Zeng,et al.  New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes , 2015, Journal of the American Statistical Association.

[42]  Yingqi Zhao,et al.  Inference for Optimal Dynamic Treatment Regimes Using an Adaptive m‐Out‐of‐n Bootstrap Scheme , 2013, Biometrics.

[43]  I. McKeague,et al.  An Adaptive Resampling Test for Detecting the Presence of Significant Predictors , 2015, Journal of the American Statistical Association.

[44]  J. Robins,et al.  Double/Debiased Machine Learning for Treatment and Structural Parameters , 2017 .

[45]  Martin J. Wainwright,et al.  Fast global convergence of gradient methods for high-dimensional statistical recovery , 2011, ArXiv.

[46]  Xuming He,et al.  Inference for single-index quantile regression models with profile optimization , 2016 .

[47]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[48]  Jane-ling Wang,et al.  Estimation for a partial-linear single-index model , 2009, 0905.2042.

[49]  M. Kosorok,et al.  Adaptive Treatment Strategies in Practice: Planning Trials and Analyzing Data for Personalized Medicine , 2015 .

[50]  Guang Cheng,et al.  Simultaneous Inference for High-Dimensional Linear Models , 2016, 1603.01295.

[51]  M R Kosorok,et al.  Penalized Q-Learning for Dynamic Treatment Regimens. , 2011, Statistica Sinica.

[52]  Jasjeet S. Sekhon,et al.  Causaltoolbox—Estimator Stability for Heterogeneous Treatment Effects , 2019, Observational Studies.

[53]  Yingcun Xia,et al.  On extended partially linear single-index models , 1999 .

[54]  D. Ruppert,et al.  Penalized Spline Estimation for Partially Linear Single-Index Models , 2002 .

[55]  Xinkun Nie,et al.  Quasi-oracle estimation of heterogeneous treatment effects , 2017, Biometrika.

[56]  T. Tony Cai,et al.  Confidence intervals for high-dimensional linear regression: Minimax rates and adaptivity , 2015, 1506.05539.

[57]  Ker-Chau Li,et al.  Honest Confidence Regions for Nonparametric Regression , 1989 .

[58]  Peter Radchenko,et al.  High dimensional single index models , 2015, J. Multivar. Anal..

[59]  T. Speed,et al.  On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9 , 1990 .

[60]  Gerda Claeskens,et al.  Confidence intervals for high-dimensional partially linear single-index models , 2016, J. Multivar. Anal..

[61]  Kengo Kato,et al.  Uniform post selection inference for LAD regression and other z-estimation problems , 2013 .

[62]  Wenbin Lu,et al.  High-Dimensional Inference for Personalized Treatment Decision. , 2018, Electronic journal of statistics.

[63]  Donald B. Rubin,et al.  Bayesian Inference for Causal Effects: The Role of Randomization , 1978 .