On the extremal properties of the average eccentricity

The eccentricity of a vertex is the maximum distance from it to another vertex and the average eccentricity ecc(G) of a graph G is the mean value of eccentricities of all vertices of G. The average eccentricity is deeply connected with a topological descriptor called the eccentric connectivity index, defined as a sum of products of vertex degrees and eccentricities. In this paper we analyze extremal properties of the average eccentricity, introducing two graph transformations that increase or decrease ecc(G). Furthermore, we resolve four conjectures, obtained by the system AutoGraphiX, about the average eccentricity and other graph parameters (the clique number and the independence number), refute one AutoGraphiX conjecture about the average eccentricity and the minimum vertex degree and correct one AutoGraphiX conjecture about the domination number.

[1]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[2]  Aleksandar Ilic,et al.  Distance spectral radius of trees with fixed maximum degree , 2010 .

[3]  P. Hansen,et al.  Variable neighbourhood search: methods and applications , 2010, Ann. Oper. Res..

[4]  Frank Harary,et al.  Distance in graphs , 1990 .

[5]  I. Gutman,et al.  Eccentric Connectivity Index of Chemical Trees , 2011, 1104.3206.

[6]  Dragan Stevanović,et al.  The Estrada index of chemical trees , 2009 .

[7]  Bo Zhou,et al.  ON ECCENTRIC CONNECTIVITY INDEX , 2010 .

[8]  P. Hansen,et al.  Variable Neighborhood Search for Extremal Graphs. 25. Products of Connectivity and Distance Measures , 2007 .

[9]  A. K. Madan,et al.  Eccentric Connectivity Index: A Novel Highly Discriminating Topological Descriptor for Structure-Property and Structure-Activity Studies , 1997 .

[10]  Sandi Klavzar,et al.  On distance-balanced graphs , 2010, Eur. J. Comb..

[11]  A. K. Madan,et al.  Application of Graph Theory: Relationship of Eccentric Connectivity Index and Wiener's Index with Anti-inflammatory Activity , 2002 .

[12]  Pierre Hansen,et al.  Graphs with maximum connectivity index , 2003, Comput. Biol. Chem..

[13]  Mustapha Aouchiche,et al.  Variable Neighborhood Search for Extremal Graphs 14: The AutoGraphiX 2 System , 2006 .

[14]  P. Hansen,et al.  Variable Neighborhood Search for Extremal Graphs: IV: Chemical Trees with Extremal Connectivity Index , 1999, Comput. Chem..

[15]  Ivan Gutman,et al.  GRAPHS WITH EXTREMAL CONNECTIVITY INDEX , 2001 .

[16]  Satish Sardana,et al.  Predicting anti-HIV activity of TIBO derivatives: a computational approach using a novel topological descriptor , 2002, Journal of molecular modeling.

[17]  Pierre Hansen,et al.  Variable neighborhood search for extremal graphs: 1 The AutoGraphiX system , 1997, Discret. Math..

[18]  Béla Bollobás,et al.  Graphs of Extremal Weights , 1998, Ars Comb..

[19]  N. T. Hoai-Phuong,et al.  Optimization under Composite Monotonic Constraints and Constrained Optimization over the Efficient Set , 2006 .

[20]  Mustapha Aouchiche,et al.  Nordhaus-Gaddum relations for proximity and remoteness in graphs , 2010, Comput. Math. Appl..

[21]  Pierre Hansen,et al.  Variable Neighborhood Search for Extremal Graphs: IV: Chemical Trees with Extremal Connectivity Index , 1998, Comput. Chem..

[22]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[23]  I. Gutman,et al.  Mathematical Concepts in Organic Chemistry , 1986 .

[24]  N. Trinajstic Xueliang Li, Ivan Gutman: Mathematical Aspects of Randić-type Molecular Structure Descriptors , 2006 .

[25]  Guihai Yu,et al.  On the eccentric distance sum of trees and unicyclic graphs , 2011 .

[26]  M. Randic Characterization of molecular branching , 1975 .

[27]  Mustapha Aouchiche,et al.  Variable neighborhood search for extremal graphs. 21. Conjectures and results about the independence number , 2006, Discret. Appl. Math..

[28]  R. Entringer,et al.  Average distance, minimum degree, and spanning trees , 2000 .

[29]  Mustapha Aouchiche,et al.  A survey of automated conjectures in spectral graph theory , 2009 .

[30]  Peter Dankelmann,et al.  Average distance, minimum degree, and spanning trees , 2000, J. Graph Theory.

[31]  Vipin Kumar,et al.  Predicting anti-HIV activity of 2,3-diaryl-1,3-thiazolidin-4-ones: computational approach using reformed eccentric connectivity index , 2004, Journal of molecular modeling.

[32]  Wenshui Lin,et al.  Ordering trees by their largest eigenvalues , 2006 .

[33]  P. Dankelmann,et al.  The Average Eccentricity of a Graph and its Subgraphs , 2022 .

[34]  Pierre Hansen,et al.  Using size for bounding expressions of graph invariants , 2011, Ann. Oper. Res..

[35]  P. Hansen,et al.  Automated Results and Conjectures on Average Distance in Graphs , 2006 .

[36]  Harish Dureja,et al.  Predicting anti-HIV-1 activity of 6-arylbenzonitriles: computational approach using superaugmented eccentric connectivity topochemical indices. , 2008, Journal of molecular graphics & modelling.

[37]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[38]  Xiaofeng Guo,et al.  On the largest eigenvalues of trees with perfect matchings , 2007 .

[39]  Pierre Hansen,et al.  Variable neighborhood search for extremal graphs. 23. On the Randic index and the chromatic number , 2009, Discret. Math..

[40]  Stephan G. Wagner,et al.  Some new results on distance-based graph invariants , 2009, Eur. J. Comb..

[41]  Xueliang Li,et al.  A Survey on the Randic Index , 2008 .

[42]  H. Oser An Average Distance , 1975 .

[43]  Simon Mukwembi,et al.  On the eccentric connectivity index of a graph , 2011, Discret. Math..

[44]  Doslic Tomislav,et al.  Eccentric Connectivity Index: Extremal Graphs and Values , 2010 .