Fusion bonding: hetero-interfacial materials analysis and device application

A large number of novel devices have been recently demonstrated using wafer fusion to integrate materials with different lattice constants. In many cases, devices created using this technique have shown dramatic improvements over those which maintain a single lattice constant. We present device results and characterizations of the fused interface between several groups of materials.

[1]  Y. Hamakawa,et al.  Superjunction by Wafer Direct Bonding , 1995 .

[2]  K. Chiu,et al.  Low threshold current high-temperature operation of InGaAs/AlGaAs strained-quantum-well lasers , 1992, IEEE Photonics Technology Letters.

[3]  D. E. Mull,et al.  Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration , 1990 .

[4]  S. Denbaars,et al.  Cleaved Facets in Gan by Wafer Fusion of Gan to Inp , 1996 .

[5]  H. Tanobe,et al.  Etching and Optical Characteristics in GaAs/GaAlAs Surface Emitting Laser Fabrication Using a Novel Spray Etch , 1992 .

[6]  G. Eisenstein,et al.  Temperature dependent loss and overflow effects in quantum well lasers , 1994, IEEE Photonics Technology Letters.

[7]  T. Yamamoto,et al.  High-temperature operation of InGaAs/InGaAsP compressive-strained QW lasers with low threshold currents , 1993, IEEE Photonics Technology Letters.

[8]  Long Yang,et al.  Room-temperature continuous-wave operation of 1.54-μm vertical-cavity lasers , 1995, IEEE Photonics Technology Letters.

[9]  S. Yun,et al.  Studies on Microvoids at the Interface of Direct Bonded Silicon Wafers , 1992 .

[10]  R. D. Yadvish,et al.  High temperature characteristics of InGaAsP/InP laser structures , 1993 .

[11]  J. Bowers,et al.  Wafer Fusion for Surface-Normal Optoelectronic Device Applications , 1997 .

[12]  Rajeev J Ram,et al.  Low threshold, wafer fused long wavelength vertical cavity lasers , 1994 .

[13]  J. Haisma,et al.  SURFACE PREPARATION AND PHENOMENOLOGICAL ASPECTS OF DIRECT BONDING , 1995 .

[14]  F. A. Kish,et al.  Low‐resistance Ohmic conduction across compound semiconductor wafer‐bonded interfaces , 1995 .

[15]  Felix Ejeckam,et al.  Lattice engineered compliant substrate for defect-free heteroepitaxial growth , 1997 .

[16]  Stefan Bengstsson Semiconductor wafer bonding: a review of interfacial properties and applications , 1992 .

[17]  Z. Lu,et al.  Ultraviolet‐ozone oxidation of GaAs(100) and InP(100) , 1993 .

[18]  Mayank T. Bulsara,et al.  Monolithic InGaAs-on-silicon shortwave infrared detector arrays , 1997, Photonics West.

[19]  D. Deppe,et al.  Sub-40 μA continuous-wave lasing in an oxidized vertical-cavity surface-emitting laser with dielectric mirrors , 1996, IEEE Photonics Technology Letters.

[20]  S. Sugou,et al.  High-quality InGaAs/InP multiquantum-well structures on Si fabricated by direct bonding , 1994 .

[21]  S. Chandrasekhar,et al.  Temperature and output power dependence of carrier overflow and internal loss in InGaAs/InGaAsP multiple quantum well lasers , 1994, Proceedings of IEEE 14th International Semiconductor Laser Conference.

[22]  Niloy K. Dutta,et al.  Temperature dependence of threshold of strained quantum well lasers , 1991 .

[23]  M. Nakamura,et al.  Effect of substrate misorientation on tear-drop-like hillock defect densities in InP and GaInAsP grown by metalorganic chemical vapor deposition , 1993 .

[24]  U. Zeimer,et al.  Oxide‐free etching of (100) InP surfaces , 1989 .

[25]  Gilles Patriarche,et al.  Structure of the GaAs/InP interface obtained by direct wafer bonding optimised for surface emitting optical devices , 1997 .

[26]  John E. Bowers,et al.  High gain-bandwidth-product silicon heterointerface photodetector , 1997 .

[27]  M. A. Koza,et al.  Bonding by atomic rearrangement of InP/InGaAsP 1.5 μm wavelength lasers on GaAs substrates , 1991 .