The Cryptanalysis of Yuan et al.’s Multiparty Quantum Secret Sharing Protocol

Recently, Yuan et al. summarized some previous analysis of quantum secret sharing task and designed a multiparty quantum secret sharing protocol based on the continuous variable operations (CVO) with the ideas of dense coding and ping-pong technique (YMQSS). However, our research shows that the YMQSS protocol is unable to complete the quantum secret sharing task securely if the particular participant, Bob0, is dishonest. In order to show that, we describe the following two attack strategies: one is that Bob0 can get the accurate shared secrets himself and leave the other sharers get his forged ones; the other one is that Bob0 can conspire with another sharer Bobi (i≠0) to get Alice’s secrets without anyone’s help. Finally, our discussions and conclusions are proposed.

[1]  Guang-Can Guo,et al.  Quantum secret sharing without entanglement , 2002 .

[2]  W. Bowen,et al.  Tripartite quantum state sharing. , 2003, Physical review letters.

[3]  V. Karimipour,et al.  Quantum secret sharing based on reusable GHZ states as secure carriers , 2002, quant-ph/0204124.

[4]  Qiaoyan Wen,et al.  Improving the security of multiparty quantum secret sharing against an attack with a fake signal , 2006 .

[5]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[6]  Jun Zhou,et al.  Efficient Multiparty Quantum Secret Sharing of Secure Direct Communication Based on Bell States and Continuous Variable Operations , 2005 .

[7]  D. Markham,et al.  Graph states for quantum secret sharing , 2008, 0808.1532.

[8]  L. Hsu Quantum secret-sharing protocol based on Grover's algorithm , 2003 .

[9]  N. Gisin,et al.  Experimental demonstration of quantum secret sharing , 2001 .

[10]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[11]  Chuan Wang,et al.  Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state , 2005 .

[12]  Zhan-jun Zhang,et al.  Multiparty quantum secret sharing , 2004, quant-ph/0412203.

[13]  Qiaoyan Wen,et al.  Security of a kind of quantum secret sharing with single photons , 2011, Quantum Inf. Comput..

[14]  Qiaoyan Wen,et al.  Quantum key distribution without alternative measurements and rotations , 2006 .

[15]  Yi-Min Liu,et al.  Multiparty quantum secret sharing of secure direct communication using single photons , 2008 .

[16]  Xiu-Bo Chen,et al.  An efficient and secure multiparty quantum secret sharing scheme based on single photons , 2008 .

[17]  V. Karimipour,et al.  Entanglement swapping of generalized cat states and secret sharing , 2001, quant-ph/0112050.

[18]  Ting Gao,et al.  Addendum to "Quantum secret sharing between multiparty and multiparty without entanglement" , 2005 .

[19]  Fei Gao,et al.  Security of quantum secret sharing with two-particle entanglement against individual attacks , 2009, Quantum Inf. Comput..

[20]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[21]  A. Klappenecker,et al.  Sharing classical secrets with Calderbank-Shor-Steane codes , 2009 .

[22]  Barry C. Sanders,et al.  Erratum: Graph states for quantum secret sharing [Phys. Rev. A 78, 042309 (2008)] , 2011 .

[23]  M. Bourennane,et al.  Experimental quantum secret sharing using telecommunication fiber , 2008 .

[24]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[25]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[26]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[27]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[28]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[29]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[30]  Adan Cabello Quantum key distribution without alternative measurements , 2000 .

[31]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[32]  Z. D. Wang,et al.  Single qubit quantum secret sharing with improved security , 2007, Quantum Inf. Comput..

[33]  H. Weinfurter,et al.  Experimental demonstration of four-party quantum secret sharing. , 2006, Physical review letters.

[34]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[35]  Kui Hou,et al.  Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements , 2010 .

[36]  S. Bandyopadhyay Teleportation and secret sharing with pure entangled states , 2000, quant-ph/0002032.

[37]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[38]  Qiaoyan Wen,et al.  Quantum secure direct communication with χ -type entangled states , 2008 .

[39]  Christian Kurtsiefer,et al.  Experimental single qubit quantum secret sharing. , 2005, Physical review letters.

[40]  Qiaoyan Wen,et al.  Cryptanalysis and improvement of multiparty quantum secret sharing schemes , 2008 .

[41]  Hideki Imai,et al.  Improving quantum secret-sharing schemes , 2001 .

[42]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[43]  Deng Fu-Guo,et al.  Erratum: Improving the security of multiparty quantum secret sharing against Trojan horse attack [Phys. Rev. A 72, 044302 (2005)] , 2006 .

[44]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.