Fitting correlated residual error structures in nonlinear mixed-effects models using SAS PROC NLMIXED

Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, σ2Ini$$ {\sigma}^2{\mathbf{I}}_{n_i} $$, not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module.

[1]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[2]  P. Ackerman,et al.  Motivation and cognitive abilities: an integrative/aptitude-treatment interaction approach to skill acquisition , 1989 .

[3]  Michael W. Browne,et al.  Structured latent curve models , 1993 .

[4]  R. Kass Nonlinear Regression Analysis and its Applications , 1990 .

[5]  L B Sheiner,et al.  Estimating population kinetics. , 1982, Critical reviews in biomedical engineering.

[6]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[7]  D. Bates,et al.  Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model , 1995 .

[8]  R. Wolfinger Covariance structure selection in general mixed models , 1993 .

[9]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[10]  R. Littell SAS System for Mixed Models , 1996 .

[11]  Andrej Pázman,et al.  Nonlinear Regression , 2019, Handbook of Regression Analysis With Applications in R.

[12]  D. Bates,et al.  Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.

[13]  Xitao Fan,et al.  The Biasing Effects of Unmodeled ARMA Time Series Processes on Latent Growth Curve Model Estimates , 2005 .

[14]  R. Wolfinger Heterogeneous Variance-Covariance Structures for Repeated Measures , 1996 .

[15]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[16]  Calyampudi Radhakrishna Rao,et al.  Multivariate analysis : future directions 2 , 1993 .

[17]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[18]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[19]  Marie Davidian,et al.  Nonlinear Models for Repeated Measurement Data , 1995 .

[20]  Calyampudi R. Rao,et al.  Linear statistical inference and its applications , 1965 .

[21]  Pranesh Kumar,et al.  The inversion of correlation matrix for MA(1) process , 2003, Appl. Math. Lett..

[22]  H. Akaike A new look at the statistical model identification , 1974 .

[23]  Marie Davidian,et al.  Some Simple Methods for Estimating Intraindividual Variability in Nonlinear Mixed Effects Models , 1993 .

[24]  Amy H. Herring,et al.  Applied Longitudinal Analysis, 2nd Edition, by Garrett M. Fitzmaurice, Nan M. Laird, and James H. Ware, John Wiley & Sons, 2011 , 2013 .

[25]  Gregory R. Hancock,et al.  Latent Growth Modeling for Logistic Response Functions , 2009 .

[26]  John Ferron,et al.  Effects of Misspecifying the First-Level Error Structure in Two-Level Models of Change , 2002, Multivariate behavioral research.

[27]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[28]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[29]  J. Ware,et al.  Applied Longitudinal Analysis , 2004 .

[30]  G. Reinsel,et al.  Models for Longitudinal Data with Random Effects and AR(1) Errors , 1989 .

[31]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[32]  Samuel B. Green,et al.  The Impact of Misspecifying the Within-Subject Covariance Structure in Multiwave Longitudinal Multilevel Models: A Monte Carlo Study , 2007 .

[33]  Jeffrey R. Harring,et al.  Analysis of nonlinear patterns of change with random coefficient models. , 2007, Annual review of psychology.

[34]  Richard H. Jones Analysis of repeated measures , 1992 .

[35]  Marie Davidian,et al.  Nonlinear models for repeated measurement data: An overview and update , 2003 .

[36]  R. Jennrich,et al.  Unbalanced repeated-measures models with structured covariance matrices. , 1986, Biometrics.

[37]  Russell D. Wolfinger,et al.  Laplace's approximation for nonlinear mixed models. , 1993 .

[38]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[39]  Russell D. Wolfinger,et al.  Two Taylor-series approximation methods for nonlinear mixed models , 1997 .

[40]  James R. Schott,et al.  Matrix Analysis for Statistics , 2005 .

[41]  R Cudeck,et al.  Mixed-effects Models in the Study of Individual Differences with Repeated Measures Data. , 1996, Multivariate behavioral research.